Contents

	About this book	iv
1	Complex numbers	1
	1.1 Real and imaginary numbers	2
	1.2 Multiplying complex numbers and simplifying powers of i	5
	1.3 The complex conjugate of a complex number	7
	1.4 Representing complex numbers on an Argand diagram	10
	1.5 Finding the value of <i>r</i> , the modulus of a complex number <i>z</i> , and the value of θ , the argument of <i>z</i>	14
	1.6 The modulus–argument form of the complex number z	19
	1.7 Solving problems involving complex numbers	21
	1.8 Solving polynomial equations with real coefficients	24
2	Numerical solutions of equations	32
2	2.1 Solving equations of the form $f(x) = 0$ using interval bisection	33
	2.2 Solving equations of the form $f(x) = 0$ using linear interpolation	35
	2.3 Solving equations of the form $f(x) = 0$ using the Newton–Raphson process	38
3	Coordinate systems	41
	3.1 Introduction to parametric equations	42
	3.2 The general equation of a parabola	45
	3.3 The equation for a rectangular hyperbola and finding tangents and normals	52
	Review Exercise 1	63
4	Matrix algebra	72
	4.1 Finding the dimension of a matrix	73
	4.2 Adding and subtracting matrices of the same dimension	74
	4.3 Multiplying a matrix by a scalar (number)	76
	4.4 Multiplying matrices together	77
	4.5 Using matrices to describe linear transformations	82
	4.6 Using matrices to represent rotations, reflections and enlargements	86
	4.7 Using matrix products to represent combinations of transformations	90
	4.8 Finding the inverse of a 2×2 matrix where it exists	95
	4.9 Using inverse matrices to reverse the effect of a linear transformation	99
	4.10 Using the determinant of a matrix to determine the area scale factor of the	
	transformation	101
	4.11 Using matrices and their inverses to solve linear simultaneous equations	103

5	Series	107
	5.1 The \sum notation	108
	5.2 The formula for the sum of the first <i>n</i> natural numbers, $\sum r$	110
	5.3 Formulae for the sum of the squares of the first <i>n</i> natural numbers, $\sum r^2$,	
	and for the sum of the cubes of the first <i>n</i> natural numbers, $\sum r^3$	114
	5.4 Using known formulae to sum more complex series	116
6	Proof by mathematical induction	122
	6.1 Obtaining a proof for the summation of a series, using induction	123
	6.2 Using proof by induction to prove that an expression is divisible by a	
	certain integer	127
	6.3 Using mathematical induction to produce a proof for the general terms of a	
	recurrence relation	130
	6.4 Using proof by induction to prove general statements involving matrix	
	multiplication	133
	Review Exercise 2	137
	Examination style paper	142