Tick each expression that can be simplified.

$$
d+d \quad a+b \quad x^{2}+x^{2} \quad x^{2}+y^{2}
$$

(10) Collecting like terms

Grades 1-2

1. Simplify
(a) $d+d+d$
[1 mark]
(b) $t+2 t+t+t$
[1 mark]
(c) $r+2 r+r+3 r$
[1 mark]
$\dot{\Gamma}=3$ \qquad
2. Simplify

If the variables are the same, you can add the coefficients.
(a) $2 c+3 c+4 c$
[1 mark]
(b) $5 e+e-10 e$
[1 mark]
(c) $7 g-4 g-8 g$
[1 mark]
3. Simplify
(a) $3 f+4-2 f+6$
[2 marks]
(b) $3 x+8 y+x-2 y$
[2 marks]
(c) $3 x-5 y+x+4 y$
[2 marks]
$\square=3 x+x+8 y-2 y$
(d) $5 f+7-6 f-4$
[2 marks]
4. Jane simplifies $3 e f+5 e f-e f$ to get $9 e f$. Explain why Jane is wrong.
[2 marks]
Think how you would have simplified the expression and then what Jane might have done differently.
5. Simplify
(a) $m^{2}+m^{2}+m^{2}$
[1 mark]
(b) $3 a^{2}+2 h+a^{2}-3 h$
[1 mark]
(c) $5 x^{2}-4 y+3 x^{2}-3 y$
[2 marks]
There are three lots of m^{2}.

Exam focus

Always give your answer in its simplest form.
(d) $9 p^{2}+2 t-2 p^{2}+3 t$
[2 marks]
(e) $3 x^{2}-5 y+x^{2}+4 y$
[2 marks]
(f) $3 x^{2}+7 y^{2}+2 x^{2}-y^{2}$
[2 marks]

0

Fill in the gaps.
(a) $a \times a=a$
(b) $a b=a$
.b
(c) $a \times c=a$
(d) $a^{3}=a \times$

Simplifying with single operations

1. Simplify
(a) $5 \times e \times f$
[1 mark]
(b) $7 \times 2 t$
[1 mark]
(c) $5 \times 3 g$
[1 mark]
$\dot{\square}=5 \times$ ef
$\dot{\square}=7 \times 2 \times t$
$1=$ \qquad
When multiplying, remember that letters in algebra are generally written next to each other in alphabetical order.
2. Simplify
(a) $2 m \times 3 n$
[1 mark]
(b) $2 e \times 3 f$
[1 mark]
(c) $3 \times c \times c$
[1 mark]
$1=$ \qquad

Multiply the coefficients and multiply the letters.

Remember the index laws: $c \times c=c^{2}$
3. Simplify
(a) $24 x \div 3$
[1 mark]
(b) $15 a \div 5$
[1 mark]
(c) $36 y \div 12$
[1 mark]
Exam focus
Simplifying with division:
Step 1: Write the expression as a fraction.
Step 2: Cancel the numbers, then the letters.
Step 3: Use the index laws.
(d) $48 g^{2} \div 4 g \quad[1$ mark]
(e) $10 a^{4} \div 5 a^{2} \quad$ [1 mark]
(f) $42 t^{3} \div 7 t^{2}$
[1 mark]
(g) $25 x^{2} \div 5 x^{2}$
[1 mark]

Mixed operations
Grade 2
4. Simplify
(a) $\frac{25 x^{3} y^{2}}{x y} \quad[2$ marks $]$
(b) $\frac{24 a^{4} b^{3}}{12 a b}$
[2 marks]
(c) $\frac{30 c^{4} d^{5}}{10 c^{3} d^{2}}$
[2 marks]
(d) $\frac{42 g^{5} h}{g^{3}}$
[2 marks]

$$
\begin{aligned}
1 & =\frac{24 \times a^{4} \times b^{3}}{12 \times a \times b} \\
& =2 \times a^{3} \times \ldots \ldots \ldots \\
& =\ldots \ldots \ldots
\end{aligned}
$$

(e) $\frac{84 t^{7} v^{5}}{12 v^{5}}$
[2 marks]
(f) $\frac{15 s^{5} t^{4}}{s^{2} t^{3}}$
[2 marks]
5. Ben simplifies $\frac{14 m^{5} n^{8}}{2 m^{3} n^{6}}$ to get $7 m^{8} n^{14}$ Explain why Ben is wrong.
[2 marks]

GCSE Maths

Given that $x=4, y=3$ and $t=5$, find the value of
(a) $10 \times x$
(b) $5+y$
(c) $15 \div t$

Using information

Grade 3

1. Bruno has x counters. Saira has three times as many counters as Bruno. Dylan has three more counters than Bruno. Write an expression, in terms of x, for the total number of counters Bruno, Saira and Dylan have.

1 Number of counters:
Bruno has x counters
Saira has 3 \qquad counters

Dylan has $x+$ \qquad counters

So an expression for the total number of counters is $x+3 x+x+3=$ \qquad
2. There are 6 pens in a box of pens. There are 9 pencils in a box of pencils.

Nita buys m boxes of pens and n boxes of pencils.
Write an expression for the total number of pens and pencils that Nita buys.
[1 mark]

The expression for Bruno's counters is x. Use that to write expressions for Saira and Dylan's counters.

The expression for the total will be all of these added together.
3. Sweets are sold in packets and in boxes. There are 8 sweets in a packet. There are 12 sweets in a box.

Frank buys x packets of sweets and y boxes of sweets.
Write an expression for the total number of sweets that Frank buys.
[1 mark]
4. Rachel uses this rule to work out the cost in $£$ of hiring a car for n days:

Multiply the number of days by $£ 45$, then add $£ 60$
(a) Write an expression for the cost of hiring a car.
[1 mark]
${ }_{1} 45 \times$ number of days +60
45. \qquad $+$ \qquad

$£$.

(b) Imran hired a car for 12 days. Using your expression, work out the cost that Imran has to pay. [1 mark]
$\stackrel{-1}{1}$ Input 12 as n $45 \times 12+60=\ldots \ldots \ldots$
$£$
5. At the start of the week, the value in $£$ of a number of shares in a gas company can be worked out using this rule:

Multiply the number of shares by 3.5
(a) Write an expression for the value of n shares.
[1 mark]
£.
(b) Use your expression to work out the value of 250 shares.
[1 mark]
$£$.
By Thursday, the value of each share has dropped by 50p.
(c) Write an expression for the new value of the shares.
[2 marks]
I Value of each share $=(3.5-0.5)$
Value of 250 shares $=250 \times \ldots \ldots \ldots$
$£$. \qquad

GCSE Maths Algebra
 Copyrighted Material Algebraic formulae

0

Quick quiz

Simplify each expression.
(a) $x+5-x$
(b) $3 \times x$
(c) $2 x+x+6$
(d) $x+2+x-3$

Finding perimeter

Grade 3

1. The diagram shows a shape made from rectangles.

All the measurements are in centimetres.
Find an expression, in terms of x, for the perimeter of the shape.

\because Perimeter $=x+(2 x+1)+(2 x+3)+3 x+(3 x+3)+(5 x+1)$
Use the lengths you are given to work out the missing lengths.

Add all the lengths together. List them in order, so you won't miss any.

Exam focus
Give your answer in its simplest form.
2. Simon sent x parcels on Monday.

On Tuesday, he sent twice as many parcels as on Monday. On Wednesday, he sent 6 fewer parcels than on Monday. It cost $£ 8$ to send each parcel. The total cost of sending all the parcels is $£ T$.

Write down a formula for T in terms of x.
3. The diagram shows a trapezium.
$A D=x \mathrm{~cm} . B C$ is the same length as $A D$.
$A B$ is twice the length of $A D$. $D C$ is 5 cm longer than $A B$. The perimeter of the trapezium is $P \mathrm{~cm}$.

Find a formula for P in terms of x.

[3 marks]

Problem solving
Write the length of each side on the diagram in the order you read them.
$A B=2 \times x$
$D C=5+(2 \times x)$
Then add them together to equal P.
4. The diagram shows a shape made from rectangles.

All the measurements are in centimetres. All the corners are right angles.
The area of the shape is $A \mathrm{~cm}^{2}$.
Find a formula for A in terms of x. Give your answer in its simplest form.
[4 marks]
To find the area you will need to know how to expand
 two brackets. Practise expanding brackets on page 26.
(a) $a \times a \times a \times a$
(b) $\frac{a \times a \times a \times a \times a \times a}{a \times a}$
(c) $6 \times a \times 3 \times a \times b$
(d) $3 \times a \times a \times b \times b \times b$

(10) Applying laws of indices

1. Simplify these expressions.
(a) $p^{2} \times p^{7}$
[1 mark]
$\begin{aligned} & \text { (b) } x^{8} \div x^{3} \\ & T=x^{8-3} \\ &=x\end{aligned}$
[1 mark]

[1 mark]
You can combine powers when the bases are the same. When you multiply, add the powers.

$$
=y^{\prime}=y^{\prime}
$$

When you divide, subtract the powers.
2. Simplify these expressions.
(a) $\frac{q^{3} \times q^{4} \times q}{q^{2}}$
[2 marks]
(b) $\left(y^{4}\right)^{3}$
[2 marks]
(c) $\left(3 x^{2}\right)^{3}$
[2 marks]

> In part (c) you need to raise a number and a power of x to a power.
[2 marks]
(d) $3 x^{2} y \times 5 x y^{3}$
[2 marks] (e) $\frac{20 x^{5} y^{3}}{12 x y}$

When you raise a power to a power, multiply the powers.

Finding indices

Grade 5
3. $p^{5} \times p^{x}=p^{12}$
Find the value of x.
[2 marks]
4. $\left(5^{3}\right)^{y}=5^{15}$
Find the value of y.
[2 marks]
5. Given that $x=5^{p}$ and $y=5^{q}$, express the following in terms of x and y.
(a) 5^{p+q}
[1 mark]
(b) $5^{3 q}$
[1 mark]
(c) $5^{2 p+1}$
[1 mark]
Problem solving
The bases in x and y are the same. For (a) find the index law in which you would add the indices together.
6. Write these numbers in order of size. Start with the lowest number.
[2 marks]
2^{-1}
0.2
-2
2^{0}

Copyrighted Material Expanding brackets

0

Simplify each expression.
(a) $x \times 4$
(b) $5 \times y$
(c) $v \times v$
(d) $a \times 4 a$
(10)

Expanding brackets

1. Expand
(a) $3(a+5)$
[1 mark]
(b) $5(b-4)$
$\dot{I}=3 \times a+3 \times 5$
$=3$. \qquad
2. Expand these expressions.

Multiply the terms inside the bracket by the term outside the bracket.
(a) $e(e+2)$
[1 mark]
(b) $2 f(f-3)$
[1 mark]
(c) $-4 g(g+2)$
[1 mark]
(d) $-3 h(h-p)$
[1 mark] $\dot{T}=2 f \times f+2 f \times-3$
3. Expand and simplify
(a) $8 a+3(a-2 b)$
[2 marks]

$$
\begin{aligned}
& \text { (b) } \begin{aligned}
& 5(x+7)+3(x-2) \quad \text { [2 marks] } \\
&=5 \times x+5 \times 7+3 \times x+3 \times-2 \\
&=5 x+\ldots \ldots \ldots+3 x+\ldots \ldots \ldots \\
&=\ldots \ldots \ldots+\ldots \ldots \ldots
\end{aligned} \text {. }
\end{aligned}
$$

(b) has two sets of brackets separated by an addition. Expand them separately and simplify by collecting like terms.
(c) $5(y-2)+2(y-3)$
[2 marks]
(d) $3 m(m+4)-2 m(4 m+1)$ [2 marks]
(e) $5 x(2 x+1)-3 x(3 x-1)$
[2 marks]
4. Taylor expands and simplifies $3 x(2 x-5)-4 x(x+3)$. Her working is shown here:

$$
3 x(2 x-5)-4 x(x+3)=6 x^{2}-5-4 x^{2}-7 x=2 x^{2}-7 x-5
$$

Identify two mistakes in Taylor's working.

