Copyrighted Material

revise btec national Engineering

Series Consultant: Harry Smith Authors: Andrew Buckenham, Kevin Medcalf, David Midgley and Neil Wooliscroft

A note from the publisher

While the publishers have made every attempt to ensure that advice on the qualification and its assessment is accurate, the official specification and associated assessment guidance materials are the only authoritative source of information and should always be referred to for definitive guidance.

This qualification is reviewed on a regular basis and may be updated in the future. Any such updates that affect the content of this Revision Guide will be outlined at **www.pearsonfe.co.uk/BTECchanges**. The eBook version of this Revision Guide will also be updated to reflect the latest guidance as soon as possible.

For the full range of Pearson revision titles across KS2, KS3, GCSE, Functional Skills, AS/A Level and BTEC visit: www.pearsonschools.co.uk/revise

Introduction

Which units should you revise?

This Revision Guide has been designed to support you in preparing for the externally assessed units of your course. Remember that you won't necessarily be studying all the units included here – it will depend on the qualification you are taking.

BTEC National Qualification	Externally assessed units	
For each of: Extended Certificate Foundation Diploma	1 Engineeering Principles 3 Engineering Product Design and Manufacture	
Extended Diploma	1 Engineering Principles 3 Engineering Product Design and Manufacture	
	6 Microcontroller Systems for Engineers	

Your Revision Guide

Each unit in this Revision Guide contains two types of pages, shown below.

Contents

Copyrighted Material

Unit l: Engineering Principles

	e a	64
1	Laws of indices	65
2	Logarithms	66
3	Exponential function	_ 67
4	Equations of lines	68
5	Simultaneous linear equations	69
6	Expanding and factorisation	70
7	Quadratic equations 1	71
8	Quadratic equations 2	72
9	Radians arcs and sectors	7.3
10	Triaonometric ratios and graphs	74
11	Cosina rula	75
10	Sine rule	76
12		78
13	Vector addition	79
14	Surface area and volume	70
15	Systems of forces	- 79
16	Resolving forces	80
17	Moments and equilibrium	81
18	Simply supported beams	
19	Direct loading	TT-
20	Shear loading	01
21	Velocity, displacement and acceleration	
22	Applying the SUVAT equations	
23	Force friction and torque	86
24	Work and nower	87
24	France	88
20	Lifergy	00
26	Newton's laws of motion, momentum and energy	09
27	Angular parameters	90
28	Mechanical power transmission	91
29	Submerged surfaces	92
30	Immersed bodies	93
31	Fluid flow in tapering pipes	94
32	Current flow	95
33	Coulomb's law and electrostatic force	96
34	Resistance, conductance and temperature	97
35	Types of resistor	98
36	Field strenath	99
37	Capacitance	100
38	Capacitors – non-polarised	101
39	Capacitors - polarised	102
40	Ohm's law power and efficiency 1	103
10	Ohm's law, power and efficiency ?	104
40	Chillis law, power and enciency 2	104
42	Nircholl 5 voltage and current laws	100
43	Capacitors – charging and energy	100
44	Capacitors – networks	107
45	Capacitors in circuits – the time constant	301
46	Capacitors in circuits – RC transients	109
47	Diodes – bias and applications	110
48	DC power sources	111
49	Resistors in series or parallel	112
50	Resistors in series and parallel combinations	113
51	Resistors and diodes in series	114
52	Capacitors in series or parallel	115
53	Capacitors in series and parallel combinations	116
54	Magnetism and magnetic fields	117
55	Permeability	118
56	B/H curves loops and hysteresis	119
50	Reluctance and magnetic concerns	120
57	Reincrance and magnetic Screening	120
50	DC meters	120
59	DC motors	122
60	Electric generators	123
61	Inductors and self-inductance	124
62	Iranstormers and mutual inductance	125

63	AC waveforms
64	Single phase AC parameters
65	Analysing AC voltages using phasors
66	Reactance and impedance
67	Rectification
68	Your Unit 1 exam
69	Showing your working
70	'State' and 'describe' questions
71	'Explain' questions
72	'Find' questions
73	'Calculate' questions 1
74	Calculate questions 2
75	Dolve questions
76 77	Vraw questions
78	'Name' and 'Identify' questions
79	'Convert' questions
80	Using the formulae booklet
81	Formulae and constants
Un	it 3: Engineering Product
De	sign and Manufacture
86	Design triggers 1
0/ 00	Design triggers 2
00 89	Neducing energy Hybrids and energy recovery systems
90	Sustainability and cost over product life cycle
91	High-value manufacturing and designing out risk
92	Systems, equipment and interfaces
93	System compromises
94	Equipment specifications and cost effectiveness
95	Mechanical properties
96	Physical and thermal properties
97	Electrical and magnetic properties
90 aa	Advanced materials
100	Junace creatments and coatings
101	Modes of failure of materials
102	Mechanical motion
103	Mechanical linkages
104	Power sources
105	Controlling power transmission
106	Processing metals
107	Powder metallurgy and additive manufacturing
108	Joining and assembly
1109	Processing polymers
111	Processing Cerainics Processing fibre reinforced composites
112	Effects of processing
113	Scales of production
114	Customers
115	Product and service requirements
116	Product design specification (PDS) 1
117	Product design specification (PDS) 2
118	Commercial protection
119	Legislation and standards
120	LINVIRONMENTAL AND SATETY CONSTRAINTS
122	Marketina
123	Form and functionality
124	Product performance
125	Manufacturing processes and requirements

Copyrighted Material

126 127	Manufacturing needs Generating design ideas
128	Development
129	Design information
130	Freehand sketching, diagrams, technical drawings
131	Graphical techniques
132	Written communication
133	Design documentation
134	Iterative development
135	Statistical data 1
136	Statistical data 2
13/	Data handling and graphs 1
130	Data handling and graphs 2
139	l requency distributions
140	Validating the design
141	Denetits and opportunities
142	Your Unit 3 cet tack
143	Peading a brief
144	Conducting research
140	Making notes
140	Reading further information
148	Interpreting an engineering drawing
149	Analysing data
150	Creating a time plan
151	Recording changes and action points
152	Interpreting a brief
153	Interpreting numerical data
154	Producina desian ideas 1
155	Producing design ideas 2
156	Modified product proposal
157	Justifvina a desian
158	Justifying materials and processes
159	Developing sustainability
160	Validating a design proposal
161	Evaluating with tools and techniques
	,

Unit 6: Microcontroller Systems for Engineers

162	Microcontrollers and Unit 6	220 Monitoring c
163	Comparing different microcontrollers	221 Monitoring c
164	Project boards	222 Analysing a b
165	Using flowcharts	223 Completing a
166	BASIC as a programming language	224 Formulating a
167	C as a programming language	225 Proposing sy
168	Input and output devices	226 Planning a pr
169	Switches	227 System asse
170	Visible and infrared light-sensing devices	228 System test
171	Temperature and humidity sensors	229 Results analy
172	Input interfacing requirements	230 Recording a
173	Ultrasonic and control potentiometers	231 Recording a
174	Optoelectronic output devices	
175	Electromechanical output devices	232 ANSWERS
176	Audio output devices	••••
177	Transistor output stages	
178	Selecting hardware: input devices	A small bit of small
179	Selecting hardware: output devices	Pearson publishes 5
180	Generating a system design	Specification on its
181	Safe use of typical electronic tools	The questions in Mo
182	Assembling and operating a microcontroller system	You test your know
183	PICAXE® and Logicator: program files and error checking	assessment may no

184	PICAXE® and Logicator: simulation, compiling and	
185	debugging Microchin PICkit 3 and MPIAB®, program files and error	
105	checkina	
186	Microchip, PICkit 4 and MPLAB [®] : simulation and	
	debugging	
187	GENIE®: program files	
188	GENIE®: simulation	
189	GENIE®: compiling and debugging	
190	Arduino ^{IIII} Uno: program files and error checking	
192	Flowcode and E-Block: creating and managing program	
IUL	files	
193	Flowcode and E-Block: simulation	
194	Flowcode and E-Block: simulation and debugging	
195	Coding practice and efficient code authoring	
196	Coding constructs: inputs and outputs (BASIC and C) 1	
197	Coding constructs: inputs and outputs (DASIC and C) 2	
199	Coding constructs: inputs and outputs (GENIE' flowchart) 2	
200	Coding constructs: logic and arithmetic variables and	
	arrays	
201	Coding constructs: logic and arithmetic	
202	Coding constructs: program flow and control 1	
203	Coding constructs: program flow and control 2	
204	Program flow: iteration	
205	Control of program sequence: If else	
206	Control of program sequence: switch 1	
208	Structured program design	
209	Number systems: decimal to binary	
210	Number systems: binary to decimal	
211	Project analysis	
212	System design and program planning	
213	System assembly, coding and testing	
214	Dystem testing and operation	
216	Your Unit 6 set task	
217	Reading a brief	
218	Creating a task plan	
219	Monitoring progress	
220	Monitoring changes 1	
221	Monitoring changes 2	
222	Analysing a brief for product requirements	
223	Completing a test plan	
225	Proposing system connections	
226	Planning a program structure	
227	System assembly and programming	
228	System testing —	
229	Results analysis	
230	Recording a system in operation	
231	Recording a commentary	
232	ANSWERS	
••••		
A	all bit of small print	
Pears	on publishes Sample Assessment Material and the	
Spec	fication on its website. This is the official content	
and t	his book should be used in conjunction with it.	
The q	uestions in NOW try this have been written to help	
<u>asses</u>	sment may not look like this.	
	-	

an Information Booklet of Formulae and Constants and this includes the multiplication, division and powers laws of indices. Ideally, you should be confident in their use without reference to them.

The booklet is included in this Revision Guide on pages 81 to 85.

- **2** Express $\sqrt{(x^a \times x^b)}$ as a power of x
- **3** Evaluate $\sqrt[3]{9} \times \sqrt[6]{9}$

Exponential function

Nailed it!

Copyrighted Material

Nearly there

An exponential function (a^x) is one where the variable is the power, not the base. The Euler constant form of this expression (e') is found in many engineering disciplines such as aerodynamics, mechanics and electrical principles.

Using a calculator

SHIFT

Most calculators have the exponential button e^{x}

button; it may be a secondary function of the

'In' button. For example, to find $e^{2.5}$, press:

In

and the calculator should show 12.182....

2.5

Worked example

Had a look

In a production process involving heat transfer, the temperature θ °C of a mould, at time *t* minutes, is given by $\theta = 250 + 150e^{-0.15t}$. Determine the temperature of the mould after 5 minutes.

- $\theta = 250 + 150e^{-(0.15 \times 5)} = 250 + 150e^{-(0.75)}$
 - = 250 + 70.8549
- $\theta = 320^{\circ}C$ (to 2 s.f.)

Now try this

- 1 A manufacturer quadruples its production of a component from 2000 units per year every year for three years. Calculate the number of components produced at the end of the third year.
- 2 The voltage (V_c) across a capacitor in a RC circuit is given by $V_c = V_s(1 e^{-\frac{1}{\tau}})$, where τ is the time constant and V_s is the supply voltage. Determine the value of V_c at $t = 5\tau$ when the supply voltage is 4.5V.

Unit 1

Content

Equations of lines

Copyrighted Material

Nearly there

The equation of a straight line can be written in the form y = mx + c, where m is the **gradient** of the line, and c is the point where it crosses the y-axis.

Point and gradient

If you are given the gradient *m* of a straight line that passes through a point (x_1, y_1) , then you can write its equation as:

Had a look

 $y - y_1 = m(x - x_1)$ to obtain an expression of y in terms of x.

Worked example

A straight line passes through the point (-3, 2) and has a gradient -2. Find an equation for this line in the form ax + by + c = 0, where *a*, *b* and *c* are integers.

> $y - y_1 = m(x - x_1)$ y - 2 = -2(x - (-3))y - 2 = -2x - 6

y + 2x + 4 = 0

If you are given two points on a line, (x_1, y_1) and (x_2, y_2) , you can calculate the gradient using: $m = \frac{y_2 - y_1}{1}$

 $m = \frac{1}{x_2 - x_1}$

Worked example

The line *L* passes through the points (1, 1) and (2, 4). Find an equation for *L* in the form y = mx + c. Gradient $(m) = \frac{4-1}{2-1} = 3$ y = mx + c y = 3x + c 1 = 3(1) + c (from point (1, 1)) c = -2 so y = 3x - 2Check using point (2, 4): 4 = 3(2) - 2

Nailed it!

Once you've evaluated the value of c, you can substitute this in the general equation of the straight line y = mx + c

Worked example Intercepts You can find where the line y = mx + cintercepts both the x- and the y-axes. Determine the intercepts for the x- and y-axes of the line The y- intercept is given by the value of c, 3y - x = 6. and the x- intercept can be evaluated by Rearranging the expression in the form setting the value of y to O. y = mx + c gives $y = \frac{1}{3}x + 2$, therefore the y I y-axis intercept is +2 (when x = 0). 4 Setting y = 0: 3 $\frac{1}{3}x + 2 = 0$ 2 x + 6 = 0-6 -5 -4 -3 -2 -1 0 1 2 3 4 x = -6 Therefore, the x- intercept is -6. You can sketch a graph to check your answer. Graph of $y = \frac{1}{3}x + 2$ The gradient is positive because the *m* term $(\frac{1}{2})$ is positive and the line passes through the x-axis at -6 and the y-axis at +2.

Now try this

- 1 The line *L* passes through the point (6, –5) and has gradient $-\frac{1}{3}$. Find an equation for *L* in the form ax + by + c = 0, where *a*, *b* and *c* are integers.
- 2 The line *L* passes through (-4, 2) and (8, 11). Find an equation for *L* in the form y = mx + c, where *m* and *c* are constants.

Copyrighted <u>Material</u> Unit 1 Had a look Nearly there Nailed it! Content

Simultaneous linear equations

Linear equations have the form y = mx + c (i.e. no x^2 or y^2). Simultaneous equations can be solved using either the substitution or the elimination method. Whichever method you use, remember to number the equations to keep track of your working.

V The solutions to a pair of linear simultaneous equations correspond to the point where the graphs of the equations intersect. \checkmark The point of intersection has an x value and a y value.

linear equations y - 2x = 2 and -2y + 5 = x.

Worked exampleSolve the simultaneous equations: $y - 3x = 8$ $2y + 11 = -9x$ $2y + 11 = -9x$ (2)From (1): $y = 3x + 8$	You can substitute for x or y. It is easier to substitute for y because there will be no fractions. Remember to number your equations.	Worked example Solve the simultaneous equations 6x + 6 = 5y (1) 3y + 2x = 7 (2) Multiply equation (2) by -3 and rearrange to make the x terms the same
Substitute (3) into (2) and simpli 2(3x + 8) + 11 = -9x 6x + 16 + 11 = -9x $15x = -27, x = -\frac{27}{15} = -1.8$ Substitute $x = -1.8$ into equation	fy to find <i>x</i> :	to make the x terms the same. -6x + 21 = 9y (3) Add equation (1) to equation (3) to eliminate the term $6x$ and $-6x$. 27 = 14y, $y = 1.93$; now substitute into (2) to obtain x:
y - 3(-1.8) = 8, y = 8 - 5.4 Remember that the value of represent the coordinates of where the simultaneous equi	= 2.6 x and y of the point ations intersect.	$(3 \times 1.93) + 2x = 7, x = 0.61$ You can check your solution by substituting x = 0.61 into equation (1): $(6 \times 0.61) + 6 = 5x$
Elimination		y = 1.93

5x

Manipulate one of the equations to make either the xor the y terms exactly the same in both equations.

Now try this

Solve the following simultaneous equations:

1	2x + 13 = -3.5y	2	14 = 3y + 5x
	-3x = -9y		10x = 4y + 7

Factorise and, hence, show that the complete expression is equal to $\frac{3v}{V_i + V}$.

Quadratic equations occur throughout engineering in different forms. You must be able to identify them and know how to solve them using three methods. Factorisation and completing the square are shown below. Use of the formula is shown on page 8. You will find practical uses for these methods on page 20.

Factorising a quadratic

You can follow these steps to solve some quadratic equations:

Rearrange the equation into the form $ax^2 + bx + c = 0$.

Factorise the left-hand side.

Set each factor equal to zero and solve to find two values of t: (t - 3)(t + 5) = 0.

The valid solution is the value of t that is greater than O. This is given by the factor (t - 3), therefore the answer is t = 35.

You could indicate this in your answer by writing: where $t \ge 0$.

_ _ _ _ _ _

Worked example

The displacement of a car in metres (s) is given by $s = 2t + t^2$, where t is in seconds. Find how long it takes to travel 15 m. Find two numbers with a sum of +2 and a product of -15. $t^2 + 2t - 15 = 0$ The required numbers (t-3)(t+5) = 0 are '-3' and '+5'. t - 3 = 0or t + 5 = 0t = 3st = -5sor Discount the negative root in which t = -5s.

Worked example

The area of a rectangular building (length x) is given by 4 = x(5 - x), where the width in metres is (5 - x). Find the roots and, hence, the length and width.

$x^2 - 5x = -$	4	1	Complete the	ina
$x^2 - 5x + (\frac{1}{2})$	$(\frac{5}{2})^2 = -4 + ($	$\frac{-5}{2})^2$	$\left(\frac{-5}{2}\right)^2$ to both s	sides.
(x – 2.5	$)^{2} = (-2.5^{2})$	- 4		
x - 2.	$5 = \pm \sqrt{2.25}$			\
cherefore 2	x = +1.5 + 2	.5 =	4 (length)	
or :	x = -1.5 + 2	.5 =	1 (width)	/
		$x^2 - \frac{1}{2}$ writte $(x - \frac{1}{2})$	$5x + (\frac{-5}{2})^2$ may on as $(a + \frac{b}{2})^2$ c 2.5) ² .	be >r

The coefficient of the x term is the numerator of the 'complete the square' term.

Remember to add $(\frac{b}{2})^2$ to both sides of the equation.

Now try this

The distance x, in metres, along a beam where the bending moment = 0 is given by $5x^2 + 14x - 3$. Factorise this expression and, hence, find the position of x.

You need to put this expression = 0, find the roots and then discard negative values. Remember to include the units (metres).

Quadratic equations 2

Copyrighted Material

Had a look

Nearly there

In some cases, you will be unable to solve quadratic equations by factorisation or completing the square. You will need to solve them using the formula instead. You will find practical uses for this method on page 72.

Solution by formula	e: Using the formula
You can solve any quadratic by use of the formula,	The formula will be on the formulae sheet, but
but it must be in the form $ax^2 + bx + c = 0$, where	be confident in using the discriminant to check
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ c is the 'c' term	the nature of the roots.
b is the	\bigvee If $b^2 - 4ac > 0$ then there are two
coefficient	solutions.
of x	\bigvee If $b^2 - 4ac = 0$ then the quadratic has
Quadratics come in many forms, for example:	one solution.
$120I = 10I^2 + 100$	W If $b^2 - 4ac < 0$ then the quadratic
$(y-2)^2 = 18$	doesn't have real roots.
You need to recognise the different forms and	You will not be asked to solve quadratics
use the appropriate method to find the solution.	where $b^2 - 4ac < 0$.

Worked example

A duct manufacturer produces a rectangular ducting sheet of 28 m^2 in which the area is related to the width by the expression $28 = 1.6w^2 + 4.2w$. What is the width of the sheet?

 $28 = 1.6w^{2} + 4.2w \text{ or } 1.6w^{2} + 4.2w - 28 = 0$ a = 1.6, b = 4.2, c = -28 $w = \frac{-4.2 \pm \sqrt{4.2^{2} - 4 \times (1.6 \times (-28))}}{2 \times 1.6}$

 $w = \frac{-4.2 \pm 14.029}{3.2} = 3.07 \text{ or } -5.69$ Reject negative answer, width = 3.07 m (to 2 d.p.)

Nailed it!

Robotic arm on a Mars lander. Calculating the distance to turn a robotic arm in mid-motion is one use of the quadratic formula to solve $s = ut + \frac{1}{2}at^2$.

Now try this

The height, h, of a ball thrown vertically is given by

 $h = -4.3t^2 + 54t + 13$

where *t* is time, measured in seconds. The time to reach the ground will be given when h = 0. Calculate the time taken for the ball to reach the ground, using the quadratic equation.

The equation will provide two solutions. In this example, one of them will be negative, which should be rejected.

Don't forget to specify the units.

8

 $100^{\circ} = \frac{100}{180} \times \pi = \frac{1}{9} \pi \text{ rad}$ Area = $\frac{1}{2} r^2 \theta = \frac{1}{2} \times 42^2 \times \frac{5}{9} \pi = 1539.3804$ $\approx 1540 \text{ cm}^2$ (to 3 s.f.) Convert the angle to radians then use the formula for the area of the sector. Remember to round your final answer to 3 significant figures and give the correct units.

Now try this

- 1 Find the arc length and area of the sector of a circle, with radius 4 cm, which contains an angle of 30°.
- 2 A plasma cutter is used to cut sectors of a circle for ventilation trunking. The arc length of each sector is 450 mm and the radius is 1 m. Find the angle, in radians, of a sector and, hence, the number of complete sectors that can be obtained from a circle of sheet metal with radius 1 m.

Trig values for θ

The value of θ (pronounced theta) may be represented in degrees, or as radians, in terms of π .

θ (°)	heta (radians)	sin $ heta$	$\cos heta$	tan $ heta$		
0	0	0	1	0		
45	$\frac{\pi}{4}$	0.707	0.707	1	Make sure you are confident using	
90	<u>π</u> 2	1	0	-∞	both 'rad' and 'deg' modes on your calculator.	
270	<u>3π</u> 2	-1	0	-∞		
360	2π	0	1	0		

Now try this

- Produce a table that states the values of sin θ, cos θ and tan θ at the following intervals: 0°, 30°, 45°, 60°, 90°, 135°, 180°, 270°, 360°. Include a column in the table for the radian equivalent of each of these angles.
- 2 Evaluate the length of *BC* in triangle *ABC*, in which angle *B* is a right-angle, angle *A* is $\frac{\pi}{4}$ rad and *AB* is 10 cm.

First sket

First make a rough sketch of the triangle.

Compare your graphical solution with that found using the analytical approach described above.

13

80 N

Copyrighted Material

Had a look

Nearly there

Nailed it!

You need to know how to calculate the surface areas and volumes of cylinders, spheres and cones.

Coplanar non-concurrent forces act in a single plane but do not all pass through a common point.

effects and so an extra piece of information is required to fully define them.

Fully defined resultant force of a non-concurrent system with magnitude, direction, sense and distance from a centre of rotation to the line of action.

30°

s, Perpendicular P, Centre distance from of rotation the line of action of the force

Direction

Now try this

The space diagram shows a stationary weight on a slope or inclined plane. Friction is preventing the weight from sliding down the slope.

Draw a free body diagram for this system.

Note that, in your exam, you may find the terms 'free body diagram' and 'space diagram' are used interchangeably.

Calculate the magnitude and direction of the resultant for this system of coplanar forces.

16 N

Now try this

Determine whether the system of forces acting on this square plate is in static equilibrium by finding the sum of the vertical and horizontal components of the forces present and taking moments about point *A*.

To revise resolving forces and resolving a force into horizontal and vertical components, see page 16.

Now try this

Mor to f that

Refer back to page 17 Moments and equilibrium to find the conditions that must be met for static equilibrium.

Links You could also work through the additional beam problem given on page 69.

still satisfies all the conditions of static equilibrium.

Check the solution in the Worked example by determining whether the beam

	Copyrighted Material Unit] Had a look Nearly there Nailed it! Content
	Direct loading
	Direct log ting includes tensils forece, which will and stratch a component, and compressive foreces
	which push and squeeze a component. Direct loading gives rise to direct stress and direct strain.
	Direct stress (σ)
	Direct stress is a measure of the direct load inside the material perpendicular to the applied load.
	Direct stress (σ) = $\frac{\text{Normal force (F)}}{\text{Area } (A_{\sigma})}$
	Stress has units N/m^2 or Pa ($N/m^2 = 1$ Pa).
	Direct loading force (F)
-	
	Direct strain (\mathcal{E}) Direct loading force (\mathcal{F})
	Direct strain is a measure of the deformation caused
	by an applied direct stress.
	Direct strain (ε) = $\frac{\text{Change in length } (\Delta L)}{\text{Original length } (L)}$
	Strain is a dimensionless quantity and has no units. Original length (L)
	Direct loading force (F)
	Also known as Young's modulus, the Modulus of elasticity (E) expresses the linear relationship between direct stress and direct strain.
	Modulus of elasticity (E) = $\frac{\text{Direct stress }(\sigma)}{\text{Direct stress }(\sigma)}$
	Direct strain (\mathcal{E})
	Modulus of elasticity has units N/m ² or Pa.

Now try this

The sketch shows part of a structural beam that is loaded in tension. Calculate the direct stress in the beam.

Rivets are often used to join two parallel metal plates. A cross-section of such an arrangement is shown in the diagram. Calculate the shear stress in the rivet.

Rivet

Don't forget to change the values given in the question to standard units before performing any calculations.