
In
cludes

online editi
on

FREE

In
clududu es

onlilil ne edede idid titi itit on

FREE

REVISE BTEC NATIONAL

Computing

REVISION
GUIDE

R
E

V
ISE

 B
T

E
C

 N
A

T
IO

N
A

L
 C

om
p
u
tin

g
 R

E
V

ISIO
N

 G
U

ID
E

69

Unit 3
Guided

Activity 2: Interpret the brief into operational
requirements
Interpret the brief into operational requirements, to include:

product requirements

opportunities and constraints

interpretation of numerical data

key health and safety, regulatory and sustainability factors

Make sure that:
• your product requirements are cohesive and comprehensive
• the opportunities and constraints are feasible and meet the brief, enhancing product performance
• your calculation and interpretation of numerical data is accurate
• the health and safety, regulatory and sustainability factors are relevant to the given context.

1 Read the further information and client brief carefully and make a list of all the product
requirements (pages xx–xx). The first one has been done for you.

Guided

The product must join wooden beams of section 95 × 30, end to end.

2 Make a list of all the opportunities and constraints. The first one for each has been done for you.
Remember, you can always come back and add to these once you have fully analysed the task.

Opportunities

Joining the beams without drilling through them could be a better solution than the existing design.

Constraints

The chosen solution must not protrude from any face of the beams by more than 40 mm.

6 marks

LONG
PAGE

M02_BTEC_ENGINEERING_0000_U03.indd 69 23/03/2017 10:51

key health and safety, regulatory and sustainability factors

Make sure that:
• your product requirements are cohesive and comprehensive
• the opportunities and constraints are feasible and meet the brief
• your calculation and interpretation of numerical data is
• the health and safety, regulatory and sustainability factors are

1 Read the further information and client brief carefully and make a list of all the client brief carefully and make a list of all the client brief
requirements (pages xx–xx). The first one has been done for you.

Guided

The product must join wooden beams of section 95 × 30, end to end.

2 Make a list of all the opportunities and constraints
Remember, you can always come back and add to these once you have fully analysed the task.

OpportunitiesOpportunities

Joining the beams without drilling through them could be a better solution than the existing design.

Constraints

The chosen solution must not protrude from any face of the beams by more than 40

REVISE BTEC NATIONAL

Computing

REVISION
WORKBOOK

R
E

V
ISE

 B
T

E
C

 N
A

T
IO

N
A

L
 C

om
p
u
tin

g
 R

E
V

ISIO
N

 W
O

R
K

B
O

O
K

REVISE BTEC NATIONAL

Computing
REVISION WORKBOOK

THE REVISE SERIES
For the full range of Pearson revision titles across
KS2, KS3, GCSE, Functional Skills, AS/A Level
and BTEC visit: www.pearsonschools.co.uk/revise

Our revision resources are the smart choice for those revising for
the externally assessed units in Computing BTEC Nationals.
This book will help you to:

• Practise with revision questions and tasks for all externally
assessed units, with answers

• Build your confidence with guided revision activities to
scaffold longer tasks

• Improve your understanding with practical external assessment
hints throughout

• Prepare by completing practice responses in a write-in format

• Organise your revision in a single place.

Revision is more than just this Workbook!
Make sure that you have revised all the essential content and key
skills for each externally assessed unit with the accompanying BTEC
National Computing Revision Guide. It gives you:
• Full coverage of all essential content and key skills in a

one-topic-per-page format

• Key practical hints and tips for external
assessment throughout

• Annotated example responses demonstrating
good practice in approaching assessed tasks

• The ability to track your revision with
at-a-glance check boxes

• Further revision questions and tasks, with
answers.

www.pearsonschools.co.uk
myorders@pearson.com

CVR_BTEC_NAT_COMPUTING_RW_0192_CVR.indd 2 19/06/2017 11:07

Our revision resources are the smart choice for those revising for
the externally assessed units in Computing BTEC Nationals.
This book will help you to:

• Revise all the essential content and key skills for each unit

• Organise your revision with the one-topic-per-page format

• Speed up your revision with helpful hints on how to tackle
questions and tasks

• Track your revision progress with at-a-glance check boxes

• Check your understanding with annotated example responses

• Practise with revision questions and answers.

Revision is more than just this Guide!
Make sure that you have put all your skills into practice with the
accompanying BTEC National Computing Revision Workbook.
It gives you:
• More revision questions and tasks to complete, with write-in

format

• Guided activities to help scaffold revision questions and tasks,
and build your confidence

• Practical hints to support your revision and practice.

REVISE BTEC NATIONAL

Computing
REVISION GUIDE

THE REVISE SERIES
For the full range of Pearson revision titles across
KS2, KS3, GCSE, Functional Skills, AS/A Level and
BTEC visit: www.pearsonschools.co.uk/revise

www.pearsonschools.co.uk
myorders@pearson.com

CVR_BTEC_NAT_COMPUTING_RG_0185_CVR.indd 1 19/07/2017 09:26

REVISE BTEC NATIONAL
Computing

A note from the publisher

For the full range of Pearson revision titles across KS2,
KS3, GCSE, Functional Skills, AS/A Level and BTEC visit:
www.pearsonschools.co.uk/revise

In order to ensure that this resource offers high-quality
support for the associated Pearson qualification, it has
been through a review process by the awarding body.
This process confirms that this resource fully covers
the teaching and learning content of the specification
or part of a specification at which it is aimed. It also
confirms that it demonstrates an appropriate balance
between the development of subject skills, knowledge
and understanding, in addition to preparation for
assessment.

Endorsement does not cover any guidance on
assessment activities or processes (e.g. practice
questions or advice on how to answer assessment
questions), included in the resource nor does it
prescribe any particular approach to the teaching or
delivery of a related course.

Pearson examiners have not contributed to any sections
in this resource relevant to examination papers for which
they had prior responsibility.

Examiners will not use endorsed resources as a source
of material for any assessment set by Pearson.

Endorsement of a resource does not mean that the
resource is required to achieve this Pearson qualification,
nor does it mean that it is the only suitable material
available to support the qualification, and any resource
lists produced by the awarding body shall include this
and other appropriate resources.

REVISION GUIDE

Series Consultant: Harry Smith
Authors: Steve Farrell, Mark Fishpool, Christine Gate and Richard McGill

While the publishers have made every attempt to ensure that advice on the
qualification and its assessment is accurate, the official specification and associated
assessment guidance materials are the only authoritative source of information
and should always be referred to for definitive guidance.

This qualification is reviewed on a regular basis and may be updated in the future.
Any such updates that affect the content of this Revision Guide will be outlined at
www.pearsonfe.co.uk/BTECchanges. The eBook version of this Revision Guide will
also be updated to reflect the latest guidance as soon as possible.

A01_COMP_REV_BTEC_0185_PRE.indd 1 20/07/2017 09:00

Which units should you revise?
This Revision Guide has been designed to support you in preparing for the externally assessed units
of your course. Remember that you won’t necessarily be studying all the units included here – it will
depend on the qualifi cation you are taking.

BTEC National Qualifi cation Externally assessed units

For both:
Extended Certifi cate
Foundation Diploma

1 Principles of Computer Science
2 Fundamentals of Computer Systems

Extended Diploma 1 Principles of Computer Science
2 Fundamentals of Computer Systems
3 Planning and Management of Computing Projects
4 Software Design and Development Project

Your Revision Guide
Each unit in this Revision Guide contains two types of pages, shown below.

Had a look Nearly there Nailed it!

20

Unit 1

Content

Branches
Branches allow you to make decisions within an algorithm. On this page, you will revise IF…THEN…
ELSE…ELSEIF selections.

Branching with IF
The IF control structure allows codes to divide into separate
pathways, selecting between two or more routes through the
program. This structure starts with the IF...THEN line of code where
a condition is evaluated as true or false. Code immediately after the
IF...THEN line is run if the condition is true as far as the next part of
this structure, which could be:
• ELSEIF to set another condition
• ELSE for code if the condition(s) not met
• ENDIF to complete the structure.

IF WEIGHT < 50 THEN
 SET POSTAGE LABEL TO “Rate A”
 ELSEIF WEIGHT < 100 THEN
 SET POSTAGE LABEL TO “Rate B”
 ELSEIF WEIGHT < 1000 THEN
 SET POSTAGE LABEL TO “Rate C”

ELSE
 SET POSTAGE LABEL TO “Too heavy”
 ENDIF

If txtWeight.Text < 50 Then
 lblPostage.Text = “Rate A”
ElseIf txtWeight.Text < 100 Then
 lblPostage.Text = “Rate B”
ElseIf txtWeight.Text < 1000 Then
 lblPostage.Text = “Rate C”
Else
 lblPostage.Text = “Too heavy”
End If

Write a program which accepts (and validates) user input of a whole number
between 0 and 48 to represent the points achieved for a test. Your program will
use a select case structure to show ‘Fail’ (0–17), ‘Pass’ (18–25), ‘Merit’ (26–41),
‘Distinction’ (42–47) or ‘Distinction*’ (48) according to the input value.

Be very careful to code
for the grade boundaries
and use test data to
ensure they are met.

The IF condition (number
typed into WEIGHT by
the user), shows Rate A
if less than 50.

Care needs to be taken
with conditions. The
conditions here are
carefully sequenced with
fi rst condition, (<50),
so the next condition,
(<100), is from 50 up to
and not quite 100.

ELSEIF statements
respond to other
weights with ELSE line
running code not met
by any other condition
showing “Too heavy”.

Start

End

Rate A

Weight
<50?

Yes

No

Rate B

Weight
<100?

Yes

No

Rate C

Weight
<1000?

Yes

No
Too heavy

Case
study Postage rates

An app could be written
to allocate a postage rate
according to the weight of a
shipment:

Weight Rate
Below 50 g A
50 g or more
and below 100 g

B

100 g or more
and below
1000 g

C

1000 g or more Too heavy

The app will allow the user
to type a weight into a text
box, txtWeight, then show the
appropriate rate on-screen.

Branches allow you to make decisions within an algorithm. On this page, you will revise IF…THEN…Branches allow you to make decisions within an algorithm. On this page, you will revise IF…THEN…

The IF control structure allows codes to divide into separate The IF control structure allows codes to divide into separate
pathways, selecting between two or more routes through the
program. This structure starts with the IF...THEN line of code where program. This structure starts with the IF...THEN line of code where
a condition is evaluated as true or false. Code immediately after the
IF...THEN line is run if the condition is true as far as the next part of

SET POSTAGE LABEL TO “Rate A”

SET POSTAGE LABEL TO “Rate B”

SET POSTAGE LABEL TO “Rate C”

“Too heavy”

Then

ElseIf txtWeight.Text < 1000 Then

lblPostage.Text = “Too heavy”

Write a program which accepts (and validates) user input of a whole number
between 0 and 48 to represent the points achieved for a test. Your program will
use a select case structure to show ‘Fail’ (0–17), ‘Pass’ (18–25), ‘Merit’ (26–41),
‘Distinction’ (42–47) or ‘Distinction*’ (48) according to the input value.

End

Too heavy

Had a look Nearly there Nailed it!

45

Unit 1
Skills

Drawing diagrams or flow charts
You may be asked to show that you can draw or complete a diagram or flow chart.

This is an example of working code for an insertion sort:This is an example of working code for an insertion sort:

For L1 = 1 To Last
 Tmp = A(L1)
 For L2 = L1 To 1 Step -1
 If A(L2 - 1) > Tmp Then
 A(L2) = A(L2 - 1)
 Else
 Exit For
 End If
 Next L2
 A(L2) = Tmp
Next L1

Draw a flow chart for this algorithm
using standard BCS symbols. 5 marks

Sample response extract

Write pseudocode, then draw a flow chart for a linear search algorithm. You should be able to devise your own
algorithm which accepts the search criterion then loops through a data set until the criterion is found with an
output to report on finding the item or that the criterion was not present in the data set.

Make sure your flow chart accurately
shows how this algorithm works.

Try to get most of the data flows in
your flow chart to go down or right.
Use arrows to confirm each direction.

Decision box must show the correct logic.

Yes and No routes must be correctly labelled.

Draw your diagram as clearly and neatly

as possible.

The data flows should be down or right
unless arrows show otherwise.

You will need to include every
line of code in your flow chart.

You may find it helpful to produce a

quick rough sketch to clarify your
thinking.

Remember to use BCS symbols
in your flow chart.

For more on BCS flow
chart symbols, see page 11.

Links

To revise flow charts, see page 11.

To revise insertion sort, see page 28. Links

Start

End

FOR L1=1 TO
Last

A(L2)=
A(L2−1)

Tmp=A(L1)

FOR L2=1 TO
1 Step− 1

A(L2)=Tmp

A(L2)=Tmp

End of L3
loop?

EXIT FOR

End of L2
loop?

No

No

No

Yes
Yes

 pages help you revise the
essential content you need to
know for each unit.

Use the Now try this activities on every
page to help you test your knowledge
and practise the relevant skills.

pages help you prepare for
your exam or assessed task.

Skills pages have a coloured edge and
are shaded in the table of contents.

Look out for the sample response extracts to
revision questions or tasks on the skills pages.
Post-its will explain their strengths and weaknesses.

Content Skills

Introduction

A01_COMP_REV_BTEC_0185_PRE.indd 2 12/5/17 10:45 AM

iii

Workbookalso available forexternally assessed unitsISBN 9781292150192

Unit 1: Principles of Computer
Science
1 Identifying problems and processes
2 Breaking down problems and processes
3 Communicating problems and processes
4 Pattern recognition
5 Describing patterns and making predictions
6 Pattern generalisation and abstraction
7 Representing the new system
8 Algorithm design
9 Structured English (pseudocode)
10 Interpreting pseudocode
11 Flow charts
12 Handling data within a program
13 Constants and variables
14 Managing variables
15 Arithmetic operations
16 Arithmetic functions
17 String handling and general functions
18 Validating data
19 Loops
20 Branches
21 Function calls
22 Lists
23 Arrays
24 Records
25 Sets
26 Bubble sort
27 Quick sort
28 Insertion sort
29 Searching
30 Using stacks and queues
31 Procedural programming structure
32 Procedural programming control structures
33 Object-orientated programming structure
34 Object-orientated programming features
35 Event-driven programming structure
36 Event-driven programming features
37 Coding for the web: Characteristics
38 Coding for the web: Uses
39 Translation issues
40 Translation alternatives
41 Your Unit 1 exam
42 Understanding the question
43 Short-answer questions
44 Performing calculations
45 Drawing diagrams or fl ow charts
46 Longer-answer questions
47 Analyse data and information
48 Predicting outcomes
49 ‘Evaluate’ questions

Unit 2: Fundamentals of
Computer Systems
50 Types of computer system
51 Internal components
52 Input and output devices (1)
53 Input and output devices (2)
54 Storage
55 Data storage and recovery
56 Operating systems (1)
57 Operating systems (2)
58 The kernel: Managing the system

59 Operating systems (3)
60 Utility and application software
61 Open source software
62 Choosing hardware and software
63 Data processing systems
64 Data processing
65 Data processing functions
66 Approaches to computer architecture
67 The fetch decode execute cycle
68 Alternative architectures
69 Parallel computing
70 Binary and number systems
71 Converting between number bases
72 Calculating with binary
73 Working with numbers
74 Text representation
75 Image representation
76 Data structures (1)
77 Data structures (2)
78 Indices and matrices
79 Mathematical operations using matrices
80 Data communications channels
81 Types of transmission
82 Data transmission protocols
83 Simple encryption ciphers
84 Encryption in modern computer systems
85 Compression
86 Error detection
87 Error correction
88 Boolean logic
89 Simplifying expressions
90 Boolean logic problems
91 Flow charts
92 System diagrams
93 Your Unit 2 exam
94 Read and understand the questions
95 Short-answer questions
96 Performing calculations
97 Drawing diagrams
98 Longer-answer questions
99 ‘Discuss’ questions
100 ‘Evaluate’ questions

Unit 3: Planning and Managing
of Computing Projects
101 Costs and timescales
102 Quality and deliverables
103 SMART objectives
104 Project risks (1)
105 Project risks (2)
106 Project benefi ts
107 Project life cycle
108 Professionalism
109 The business case
110 Stakeholders
111 Assumptions and constraints
112 Project Initiation Document (1)
113 Project Initiation Document (2)
114 Task scheduling
115 Gantt charts
116 Resources and budgeting
117 Risk matrix and issue log
118 Quality management
119 Communicating with stakeholders
120 Waterfall software development life cycle model

Contents

A01_COMP_REV_BTEC_0185_PRE.indd 3 20/07/2017 09:00

iv

121 Tracking progress
122 Categorising issues
123 Change management
124 Change management process
125 Implementation strategy
126 Closing a live project
127 Review of project success
128 Your Unit 3 set task
129 Project Initiation Document (1)
130 Project Initiation Document (2)
131 Project Initiation Document (3)
132 Project Initiation Document (4)
133 Gantt chart
134 Resource list and cost plan
135 Project Checkpoint Report (1)
136 Project Checkpoint Report (2)
137 Project closure email (1)
138 Project closure email (2)

Unit 4: Software Design and
Development Project
139 Stages of software development
140 Flow charts
141 Pseudocode
142 Test data
143 Design concepts
144 Design pitfalls
145 Code readability
146 Simple data types
147 Arrays in Python
148 Arrays in C++

149 Date and time in Python
150 Classes and objects
151 Records
152 Sets in Python
153 Lists in Python
154 Local and global variables
155 Naming conventions

156 Arithmetic operations
157 Arithmetic functions
158 String-handling functions
159 General functions
160 Validation check: Data type
161 Validation check: Range
162 Validation check: Constraints
163 Validation check: Case statements in Python
164 Validation check: Case statements in C++

165 Loops
166 Branches
167 Function calls
168 Data structures
169 Evaluation of design
170 Evaluation of software testing
171 Evaluation of the software
172 Your Unit 4 set task
173 Use standard methods and techniques to design

a solution
 174 Analyse a task and design a solution
175 Develop a software solution
176 Select test data
177 Code readability
178 Defi ne and declare constants and variables
179 Process data with mathematical expressions
180 Function calls
181 Control structures
182 Data structures
183 Evaluating your software development project

184 ANSWERS

A small bit of small print
Pearson publishes Sample Assessment Material and the
Specifi cation on its website. This is the offi cial content and this
book should be used in conjunction with it. The questions in Now
try this have been written to help you test your knowledge and
skills. Remember: the real assessment may not look like this.

A01_COMP_REV_BTEC_0185_PRE.indd 4 20/07/2017 09:00

Had a look Nearly there Nailed it!

1

Unit 1
Content

Problem

Action 1 Action 2 Action 3 Action 4

Identifying problems
and processes

Computational thinking enables you to analyse a problem, break it down into smaller parts, recognise
patterns within the problem and fi nally identify a strategy to solve it. Over the next few pages, you will
revise the fi rst stage of computational thinking – decomposition.

You are designing an app to allow builders to price jobs.

(a) Write down a list of outputs needed for this app.

(b) Write down a list of inputs needed for this app.

(c) Choose one input and describe the actions needed to test it for validity.

Decomposition – step 1
Every computer program is made up of a number of
processes or actions. Before an app can be written,
the problem to be solved and the processes (actions)
inside the app need to be identifi ed. The fi rst step in
decomposition involves identifying and describing the
problem and the processes required to solve it.

Case
study App to collate spreadsheets

An app is being developed to bring together several
spreadsheets from different members of a team into one
workbook which can then be used for a mail merge.
The mail merge is to be from a worksheet in
the workbook using data which is selected
and copied from member worksheets.

Only data which are names of courses are to be copied to
the worksheets for mail merges. The cells with dashes in
them are to be ignored.

Think about what data is
actually needed and don’t
include more than that.

The problem must be clearly
described in language that will be
familiar to the user. Later, the solution

will be checked against the problem

to ensure all needs have been met.

Copy and paste member worksheets into
designated worksheets in the master workbook.

Run macro code to loop into each of the
designated worksheets. Loop down each row of data
and loop along the columns in each row.

Select every data item that is not dashes and copy.
Move to appropriate cell in merge worksheet, then

paste special as value.
Complete loops when blank cells are found.
Save workbook.

Once the problem has been described, the processes
needed to program the solution can be identifi ed.
These become the framework of the solution, with the
detailed steps needed to implement each process
added at the next stage.

M01_COMP_REV_BTEC_0185_U01.indd 1 20/07/2017 09:01

Had a look Nearly there Nailed it!

2

Unit 1

 Content

Think specifi cally
about how barcodes
can be used.

A local independent corner store would like to check its stock using a mobile phone app.

(a) What do you think would be needed to make this practical?

(b) What steps are needed to make the app work using the phone’s camera to scan
barcodes on stock items?

Steps in calculating points using app

 Enter the team name with number of members in the team.

Enter number of correct photo questions.

Enter number of correct other questions.

Enter number of wrong questions.

 Calculate points for correct other questions by
multiplying number correct by 2.

 Calculate subtotal by adding adjusted other questions
to correct photo questions, then subtracting number of
wrong questions.

Calculate team scaling.

Multiply subtotal by team scaling.

Repeat steps 1 to 8 for all teams.

Sort by totals to show winning team.

Once the problem and processes have been identifi ed, the next stage of decomposition is to break
down the problem and processes into a sequence of steps.

Breaking down problems
and processes

Case
study App to support a competition

An app is being developed to support a charity treasure hunt. There will be four teams of up to six
people. Each team will be given photographs of various places within the treasure hunt boundary and
clues on sheets of paper. When calculating the scores, the following rules must be applied:
• Photo questions are each worth 1 point.
• Other questions are each worth 2 points.
• Deduct 1 point for a wrong answer.
• Blank answers are each worth 0 points.
• The points total is scaled according to how many are in the team: each member is worth 25%, and

the total is then inverted. So a team of four has a scaling of 100% and a team of two has 200%.
Last year, the results were calculated in a spreadsheet. This year the organisers plan to use a
smartphone app.

A (2)
B (3)
C (6)
D (4)

Te
am

49
58
90
37

S
ub

to
ta

l

200%
133%
67%
100%

S
ca

lin
g

98
77
60
37

To
ta

l

M01_COMP_REV_BTEC_0185_U01.indd 2 20/07/2017 09:01

Had a look Nearly there Nailed it!

3

Unit 1
Content

On this page, you will revise the fi nal stage of decomposition – how to describe and communicate the
key features of problems and processes to clients and other programmers.

Communicating algorithms
Describing problems and processes as a set
of structured steps – an algorithm – will enable
clients and programmers to understand how
a proposed solution will work. At this stage,
mistakes in the understanding of the problem or
design fl aws may become apparent before the
project moves to the coding phase.

Using pseudocode
Pseudocode can be used to explain to clients
and other programmers how code will work.
This pseudocode shows the process by which
a customer pays and is given an option to rate
their experience at the restaurant.

Using a flowchart
You could also use a fl owchart to show the
algorithms required to demonstrate the processes.

An independent jeweller is setting up a website as a retail outlet. It would like to
off er a loyalty discount for customers who purchased within the last year as well
as giving a reduction of 10% on the sale for more than one item and a choice of
postage rates of next day or economy. The jeweller is VAT registered, so VAT needs to
be added to the sale after any discounts and postage.

Describe the processes that would be needed to calculate a quote for a customer
visiting the website.

What actions are
needed to produce
the quote? Each action
will be a process.

Communicating problems
and processes

Start

End

No

No

Yes

Show bill

Enter
tip

Yes Star
rating

Enter
comments

Waiter takes
payment

PayPal?

Feedback?

Log in
and pay

Case
study Restaurant tablet

A restaurant is planning to use a tablet for each
table so diners can browse the menu using
video footage of the ingredients and dishes,
and read reviews from other diners before
choosing their meal. The tablet will display the
fi nal bill, at which point diners can log into their
PayPal account or make a payment using card
or cash to the waiter. Clients may then enter
feedback about their meal.

Revise algorithm design on page 8.Links

Revise how to produce, apply and
interpret pseudocode on pages 9–10.Links

their experience at the restaurant.

If PayPal
 Enter tip amount
 Log in to PayPal
If not PayPal
 Waiter takes payment
User selects whether they want to leave feedback
If yes
 Enter star rating
 Write comments
Show thank you screen on the tablet

M01_COMP_REV_BTEC_0185_U01.indd 3 20/07/2017 09:01

Had a look Nearly there Nailed it!

4

Unit 1

 Content

Sub ColumnSort(ByRef SA (,))
Dim Z, FirstRow, Passes, Item As Integer
Dim Temp As String
FirstRow = 0
Passes = FirstRow
While Passes <= 99
 Item = FirstRow
 While Item <= 99
 If SA(2, Item) > SA(2, Item + 1) Then
 For Z = 0 To 5
 Temp = SA(Z, Item)
 SA(Z, Item) = SA(Z, Item + 1)
 SA(Z, Item + 1) = Temp
 Next Z
 End If
 Item = Item + 1
 End While
 Passes = Passes + 1
End While
End Sub

Sub ColumnSort(ByRef SA(,), NoCols, FirstRow,
LastRow, Col)
Dim Z, Passes, Item As Integer
Dim Temp As String
Passes = FirstRow
While Passes <= LastRow - 1
 Item = FirstRow
 While Item <= LastRow - 1
 If SA(Col, Item) > SA(Col, Item + 1) Then
 For Z = 0 To NoCols
 Temp = SA(Z, Item)
 SA(Z, Item) = SA(Z, Item + 1)
 SA(Z, Item + 1) = Temp
 Next Z
 End If
 Item = Item + 1
 End While
 Passes = Passes + 1
End While
End Sub

Pattern recognition
Once the problem and processes have been described, the next step involves pattern recognition
where you look for repeating features within problems and between problems. This will enable you to
create code that can be reused in other apps.

Common elements and
individual differences
• Identifying common elements or features

in problems needing coded solutions or
within systems requiring maintenance can
result in producing program code that
can be re-used in other apps.

• Identifying any differences and individual
elements within problems that can utilise
common code need interpreting so
library code can be adapted by using
appropriate parameters or branching
within subroutines.

Parameters
Parameters are vital for much re-usable code to control the values that can be passed
into a subroutine and so make the workings of this code reliable and predictable.

Write down all the benefi ts and disadvantages of reusing code within
an organisation. Do the positives outweigh the negatives?

Use a single line for each item
so it’s easy to see whether the
positives outweigh the negatives.

Code libraries
Code libraries are used by many organisations to
improve the effectiveness of programming teams by
keeping copies of program segments that are easy
to fi nd and to re-use.
Documentation is an essential element of a code
library as this is needed to clearly identify code
segments with how they can be used as reliable
building blocks for new apps.
Debugging time can be reduced by using library code
as these program segments will have already been
extensively tested and signed off as fi t for purpose.

An example of code
that is hard to re-use.

An example of the
same code tweaked
to make it re-usable.

This code uses parameters NoCols, FirstRow,

LastRow, Col instead of fi xed numbers, making

the code much more re-usable.

This code uses 0, 99, 2, 5 as fi xed numbers,
making it very infl exible as the code would
need editing to be used elsewhere.

M01_COMP_REV_BTEC_0185_U01.indd 4 20/07/2017 09:01

Had a look Nearly there Nailed it!

5

Unit 1
Content

Describing patterns and
making predictions

Once you have identifi ed repeating features, you will need to describe the patterns. You can then make
predictions based on these patterns which will enable you to design program algorithms.

Cleaning the dates data
Search and replace could be used to clean
some of the data (for example, removing
00000000). Code could edit the data into
a consistent yyyy-mm-dd format, which could
then be used as dates in the spreadsheet.

1 Create a spreadsheet to generate the fi rst 20 numbers in the Fibonacci
sequence.

2 Produce an algorithm that calculates the nth term of the Fibonacci sequence.

Each term in the Fibonacci
sequence is the sum of the
previous two terms: 1, 1, 2,
3, 5, 8, 13.

Code was written to loop down the data,

copying each item into a variable that was

then edited into the yyyy-mm-dd form,

according to the type of form it started with.

Case
study Cleaning dates data

Research was carried out to fi nd computer
games titles that had been on sale during
the last three decades. Over 10 000 items
of data were downloaded from the internet.
Some dates were not recognised as such by
the spreadsheet. The number of these entries
made manual editing a poor option due to the
time it would take and the errors that might
be introduced into the data set by so much
repetitive work.

Loops
Loops are used to repeat code that uses
patterns in the data for processing, such
as deleting parts of data items that are
not wanted.

Select top cell of the dates column
Start loop
Copy the cell into a variable, CellContent
If left 8 characters of CellContent = 00000000
 CellContent = mid(CellContent, 9,10)
If length of CellContent =12
CellContent = left(CellContent, 10)

If length of CellContent =7
 CellContent = CellContent + “-01”
If length of CellContent =6
 CellContent = left(CellContent,4) + “-01-01”
Set active cell to CellContent
Move down a cell
Loop if active cell not empty

Pseudocode 2

Select top cell of the dates column

Pseudocode 1

Each date was in one of these forms:

• 00000000 then date (yyyy-mm-dd)

then -0000 then the date as text

• date (yyyy-mm-dd) then two letters

• date (yyyy-mm)
• date (yyyy) then two letters.

not wanted.

For more on loops,
see page 19.Links

M01_COMP_REV_BTEC_0185_U01.indd 5 20/07/2017 09:01

Had a look Nearly there Nailed it!

6

Unit 1

 Content

Pattern generalisation
and abstraction

After pattern recognition, the next step is to generalise and abstract these patterns to identify all the
information necessary to solve a problem. To help you do this, you need to revise variables, constants,
key and repeated processes, inputs and outputs.

Representing a problem as code
Identifying information that is necessary to solve
an identifi ed problem is an essential part of the
programming life cycle. Parts of a problem or system
can be represented in code as variables, constants, key
processes, repeated processes, inputs and outputs.

Defi nition
Variables Values in a problem or system that may

change
Usually input by the user or may result
from calculation

Constants Values in a problem or system that
remain fi xed while the code runs

Key
processes

Processes that are essential to
understanding of a problem or how a
system works

Repeated
processes

Processes that occur multiple times
within a problem

Inputs Values read or entered into the system
Outputs Information presented to the user

Write down two key processes
and two repeated processes
for a website shopping cart.Think about the actions that take

place in the website shopping cart.

Case
study Workout app

You recently saw a television programme
which suggested that every opportunity
to exercise should be taken as ‘every
little helps!’
As you spend a lot of time using a
computer, you think that an app to help
encourage a work out whilst using a
computer might be useful.
The mouse could be moved to the
corners of the screen and clicked,
exercising the lower arm, wrists and
fi ngers. These actions could be repeated
with the other side of the body.
Even the toes and feet could be
exercised by placing the keyboard on
the fl oor and alternatively tapping the
space bar and numeric keypad to ensure
the foot has some movement.

Start button mouse click
 Initialise TapCount, StartTime to 0
 Initialise Target, to random between 1-4
 Set image(Target) to active
Target image mouse click
 IF Target matches image
 Increment TapCount
 Play success sound
 ELSE
 Play fail sound
 Call Update statistics
Key press event
 IF space or number pressed
 Increment TapCount
 Play success sound
 ELSE
 Play fail sound
 Call Update statistics
Update statistics subroutine
OUTPUT TapCount
 FOR Countdown = 5 TO 1 STEP -1
 Display Countdown

Key and repeated processes

Mouse inputs are
to click onto one
of 4 target images
placed at the four
corners of the
form. Clicking on
the correct target
image will increment
(add 1) to the
variable, TapCount.

Keyboard inputs are
to tap the spacebar
or one of the number
keys. Tapping any of
these will increment
(add 1) to the
variable, TapCount.

A start button can start the
workout by clearing the variables,
TapCount, StartTime, to zero.

The screen will show the target images
and workout statistics. Target images can
have three variants for active, inactive
and correct click. Workout statistics can
show time taken, number of correct taps/
clicks, number of incorrect taps/clicks,
average speed and accuracy percentage.

Speakers can make a sound each time a correct
click or key press is made or a different sound
if a wrong click or key press is made.

M01_COMP_REV_BTEC_0185_U01.indd 6 20/07/2017 09:01

Had a look Nearly there Nailed it!

7

Unit 1
Content

Representing the new system
The last element of pattern generalisation and abstraction is to represent the new system using
variables, constants, key processes, repeated processes, inputs and outputs. Filtering and ignoring any
information not needed to solve the problem will enable you to focus on the actual problem.

Filtering information
Before writing a program, think carefully about
what is actually needed to help solve the
problems you are asked to code.
In a database, for example, it is very easy to add
fi elds to a table so there is a place for every
possible aspect of the data subject. A better
approach is to look at the information that is
required from the system, which can then be
matched to the data needed to populate the
reports and screens outputting from the system.

Create a data dictionary identifying the fi elds needed for the tables in a
database to keep track of a health club members list.

The tables are listed in
bullets on this page. What
fi elds would each table need?

For more information on variables, constants, key processes,
repeated processes, inputs and outputs, see page 6.

Links

Case
study Health club members list

A system is being written to handle the members list
for a health club. It will hold all the information needed
for the club’s day-to-day operations.
The system should be quick and easy to use as well as
using validation techniques to reduce errors typed into
the system.
Members could be issued cards which allow scanning
into the system by barcode, swiping or NFC
(contactless near-fi eld communication).
Reports can be used to extract data from the system
onto paper and data can be exported for use in mail
merges.

Printed outputs
Reports from the health club members
database could include:
• schedule showing the activities

booked for that day, week or month
• members list summary
• member details with all the information

about an individual member
• members activity log detailing the

activities undertaken over a period of
time

• members payments due statement with
what is currently owed to the club

• booking receipt to confi rm an activity
has been reserved.

Tables
The database could include the
following tables:
• members
• activities

• bookings
• payments.

Forms
These forms will allow easy navigation of the

database to make it more user friendly:

• main menu to click buttons navigating to

other parts of the system
• members to add, edit or delete a member

• bookings to add, edit or delete a booking

• payments to record a payment
• reports to choose a report for printing.

M01_COMP_REV_BTEC_0185_U01.indd 7 20/07/2017 09:01

Had a look Nearly there Nailed it!

8

Unit 1

 Content

Designing an algorithm

Defi ne the overall purpose of the program.

Divide into the processes needed.

 Plan the steps needed for each process.

 Check the algorithm against the original
need to confi rm it will be fi t for purpose.

Algorithm design
The fi nal stage in computational thinking is to design the algorithm using a step-by-step strategy to
solve the problem. This will enable you to clearly understand how the program will work.

Stock search pseudocode
This algorithm searches for an item in a stock
data fi le and shows the results on-screen.

Sale pseudocode
This algorithm allows the user to record
details of the sale of an item and then save
to the data fi le.

New item pseudocode
This algorithm enters a new item of stock, checks all
the data present and then saves to a stock data fi le.

Algorithm design
There are often many algorithms in a program
which can be at different levels of detail.
Designing a program can start with an overall
algorithm to summarise how the system works,
with other algorithms providing detail needed to
design smaller sections of code.

Case
study Stock control system

The owner of a second-hand furniture
shop is considering writing a stock
control program because she quite
enjoys coding and wants to have control
over how the app looks and behaves.
The app is to run on a PC in the shop as
a restricted version so customers can
fi nd out if there is anything in the back
stock room that interests them.

the data present and then saves to a stock data fi le.

If any field has not been completed
 Display message
 Show * next to every field not completed
 Place cursor in first field not completed
When all fields completed
 Generate stock number
 Copy fields to Stock file
 Save Stock file
Clear fields on the New item form

Select item sold
Select customer
If customer not known
 Open New customer form
 Enter new customer
 Click on Confirm button
 Copy fields to Customer array
 Save Customer file
 Close form
Show customer information
Click confirm sale
Save Stock, Customer and Sales files
Print receipt
Clear fields on the Sales form

Click on search button
 If search textbox is empty and furniture checked
 Loop around stock array
 Display all furniture
 If search not empty and furniture checked
 Loop around stock array
 Display all furniture matching textbox
 If search empty and other checked
 Loop around stock array
 Display all non-furniture items
 If search not empty and other checked
 Loop around stock array
 Display other items matching textbox
Place cursor into search textbox

For more information on standard
algorithms, see pages 26–29.

Links

A car electronic cruise control keeps the vehicle at a constant speed by using the accelerator,
gear change and brake, until the driver cancels cruise control by using the brake.

Write pseudocode to design a cruise control system that also links into the sat-nav to
prevent the vehicle from exceeding speed limits.

What inputs
and outputs are
needed for the
control device?

M01_COMP_REV_BTEC_0185_U01.indd 8 20/07/2017 09:01

Had a look Nearly there Nailed it!

9

Unit 1
Content

Structured English (pseudocode)
There are two main methods you can use to plan program algorithms – pseudocode (structured English)
and fl ow charts. On this page, you will revise commonly used pseudocode terms and how to apply them.
Pseudocode can be converted to a programming language to implement:

Representing operations
• BEGIN…END can be used for

any code which you want to keep
separate or simply to show where
your algorithm starts and fi nishes.

• INPUT/OUTPUT are for any part of
the algorithm that allows data in or
out such as typing into a textbox or
displaying a result.

• PRINT is used when a hard copy is
produced.

• READ/WRITE are for when data are
read into the algorithm from a fi le or
written out to a fi le.

Representing repetition
Each of these are written as a single pseudocode line to defi ne the loop followed by the
repeated code indented in the code.
• FOR is the unconditional FOR…NEXT loop with the pseudocode line showing how many times

the loop iterates.
• REPEAT UNTIL is a conditional loop with the pseudocode line defi ning what ends the loop.
• WHILE/WHILE NOT are conditional loops with code defi ning what allows the iteration.

Representing decisions
• IF…THEN…ELSE…ELSEIF (ELIF) are used for branches

in the algorithm.
• Simple branches use IF…THEN to defi ne a test

condition and action for condition is met which are
usually indented or you could use BEGIN…END for them.

• ELSE is used when actions are required when an
IF…THEN condition is not met.

• ELSEIF (or ELIF in some programming languages) is
for actions to be carried out if the previous IF…THEN
condition is not met and a further test needs to be made.

• WHEN is used to represent select case structures with
several branches possible based upon the contents of a
variable.

Produce pseudocode for spreadsheet code to copy rows in a worksheet to one
of three other worksheets based upon contents of fi rst cell in each row. A fourth
worksheet is used for copies of rows where fi rst cell does not match. This needs to
be able to handle any number of rows, starting in a cell named ‘FirstCell’.

Read the requirement
carefully then consider
how you would explain the
algorithm in simple words.

Pseudocode can be converted to a programming language to implement:

REPEAT UNTIL the end of file
 READ into Sectors(Y)
 Increment Y
Set LastSector to Y - 1
Close the data file

Pseudocode can be converted to a programming language to implement:

Do
 Input(1, Sectors(Y))
 Y = Y + 1
Loop Until EOF(1)
Lastsector = Y - 1
FileClose(1)

Dos and don’ts
 Use program command words to identify

branch and loop structures.
 Use indents to show what’s included in a

structure.
 Summarise sections of code.

 Don’t write actual code which is ready to run.
 Don’t produce pseudocode in your program

editor.
 Don’t include too much detail about how code

will do an action such as swapping items.

M01_COMP_REV_BTEC_0185_U01.indd 9 20/07/2017 09:01

Had a look Nearly there Nailed it!

10

Unit 1

 Content

Interpreting pseudocode
Pseudocode is used to plan program algorithms. It enables the programmer to visualise how a program
will work and to see improvements to the logical structures and processes after reading it. On this
page, you will revise how to interpret and develop pseudocode.

Interpreting and developing code
The process calculating the outcomes of each stage
of the game will produce points earned and dice left
for the next throw. This will be large and complex,
so needs to be broken down into sub-processes,
making them easier to focus on and write.
How would you do this if playing with
real dice? The fi rst process is to fi nd
out if the highest score is thrown,
then next highest and so on. Each of
these algorithms will be a section of
pseudocode.
Preparation for identifying the highest
score can take place inside this loop
by counting how many of each number
has been thrown in the Totals() array.
This loop can also show the dice
number on the screen.
The structure of this pseudocode can be
evaluated against the requirement to identify
a throw of 1, 2, 3, 4, 5, 6 using dry runs.
The code here is reasonably effective. Less
effective code could use another FOR loop to
count how many of each number was thrown.
Less effective code might test for a number
being thrown more than once, rather than 0.

Zilch dice points rules
There are six dice with several
possible points schemes in use. We
shall use the scoring below:
1, 2, 3, 4, 5, 6 3000 pts
Three pairs 1500 pts
Three the same dice number

× 100 pts
Dice showing 5 50 pts
Dice showing 1 100 pts

Case
study Zilch

Zilch is a game played with six dice where the players each
take turns throwing the dice to earn points. A target score
is set.
The game is won by the player who goes over the target
score after the same number of turns as the other players.
When a player has a turn they keep on throwing until either
they ‘stick’ to keep their points or throw a non-scoring
combination of dice – ‘Zilch’ – when their points for the turn
are zero.

Set Score to 0
FOR X = 1 TO 6
 Set Totals(X) to 0
FOR X = 1 TO 6
 Set Throw to random number between 1-6
 Set Dice(X) to Throw
 Increment Totals(Throw)
 Show Dice(X) on the form with its number
Set Winner to True
FOR X = 1 TO 6
 IF Totals(X) = 0 THEN set Winner to False
IF Winner
 Add 3000 to Score
 Show Score on the form
 END subroutine

The variable, Winner,
is set to true then
a FOR loop iterates
through the Totals()
array, changing
Winner to false if
any of the numbers
were not thrown.

A FOR loop
throws the
dice using
the variable,
Throw, to hold
the number
for each dice.

The highest score is 1, 2, 3, 4, 5, 6 with the method
shown here using an array, Totals(), to fi nd out if
each number has been used once. Before the check,
each item in Totals() is set to 0 using a FOR loop.

Produce a description of how this pseudocode calculates a score in Zilch:

The sequence is important. Start with the
fi rst line of the pseudocode and interpret the
meaning. Remember, indents show how much code
is inside a structure such as a FOR loop.

FOR X = 1 TO 6
 IF Dice(X) = 1
 Add 100 to Score
 Decrement DiceLeft
 IF Dice(X) = 5
 Add 50 to Score
 Decrement DiceLeft
Show Score on the form

M01_COMP_REV_BTEC_0185_U01.indd 10 20/07/2017 09:01

Had a look Nearly there Nailed it!

11

Unit 1
Content

Flow charts
Flow charts provide a pictorial complement to pseudocode, helping you to plan algorithms. British
Computer Society (BCS) symbols are commonly used in fl ow charts.

Flow chart shape Description
Process used for anything in code that cannot be represented by any of the
other symbols.

Decision shows where there is a choice of two paths with the condition that
needs to be met written inside the symbol.

Input/output shows every place where data or events come into or leave the
algorithm.

Connectors are used to reduce the need to draw lines across the fl ow chart.

Start/end symbols show the entry and exit points in the algorithm.

An independent jeweller is setting up a website as a retail outlet. It would like to off er a loyalty
discount for customers who purchased within the last year as well as giving a reduction of 10% on
the sale for more than one item and a choice of postage rates of next day or economy. The jeweller
is VAT registered, so VAT needs to be added to the sale after any discounts and postage.

Produce a fl ow chart to illustrate this algorithm.

11

There should be
a symbol in the
fl ow chart for
each line of your
pseudocode.
Make sure you
use the correct
symbols.

Alarm flow chart
This fl ow chart illustrates how an alarm works
on a mobile phone.
The fl ow chart has to begin and fi nish with
start/end symbols. The rest of it needs to
show the routes that are possible in the code.
The alarm is set with an input from the user.
A decision is used to show how the
system regularly checks the actual
time to the alarm. When they match,
the yes branch is taken so the alarm is
sounded.
The user can now input into the system
to either turn the alarm off or snooze.
If snooze, the app enters a process to
wait a short time before the alarm
sounds again.
If the user turns the alarm off, a process
disables the alarm and the app ends.
Waiting is shown in this fl ow chart both as a
process (wait 2 minutes) and as a loop (time
= alarm?). These are both valid techniques
for showing the delay with the author of the
fl ow chart able to choose the method they
prefer to show this delay.

Start

End

Set the alarm

Sound alarm

User input

Alarm off

Wait 2 minutes

Time =
alarm?

Snooze or
off?

Snooze

Off

Yes

No

Input/output

Start/end

Decision

Process

Silence alarm

M01_COMP_REV_BTEC_0185_U01.indd 11 20/07/2017 09:01

Had a look Nearly there Nailed it!

12

Unit 1

 Content

Handling data within a program
Programming paradigms can be used to build computer code to handle data within a program. On this
page, you will revise common data-handling techniques and structures provided within programming
languages to process data.

Reading a data file
Code to read a data fi le usually needs
an indefi nite loop to repeat reading each
line from the disk until it reaches the end
of fi le.
A variable, EmployersFile, has been set
to name the data fi le before the code
here opens it for input. A variable, Y,
is set to zero before the Do loop to
keep track of each line read in from the
EmployersFile and which item in the array, Employers(), is used to store the input data.
A nested loop uses the variable, X, to keep track of the data for each employee and which item in the
array is used to store the input data. This loop uses a UCase() function to force each data item to
upper case.
After EmployersFile is closed variable, Y, is used to set variable, LastEmployer, so the program knows
the subscript number of the last employee record in the array, Employers().

Writing a data file
Code to write a data fi le can
use a defi nite loop to repeat
writing each line to the disk
as the code knows how many
records are in the array.
A variable, NameOfFile, is set
to name the data fi le before
the code here opens it for
output.
This code uses a variable,
LineOfPrint, which is built up
into each line to be written
to the disk with a comma
between each data item.
Two FOR…NEXT loops are used to write to disk.
The fi rst loop produces column headings for when the data fi le is opened into Excel with the name of the
array, Allocations(6-200), in the fi rst column and numbers from the loop variable, X, for which array item
is in the other columns.
The second loop writes the data to disk. After this loop, the data fi le is closed.

Produce a program to read in a data fi le, make changes to the data and write
it back to the disk. The data fi le can be created using Excel and saved as CSV
(comma separated variables). Use a calculation in the spreadsheet to produce
a reference number in the fi rst column. The program you write can add ‘REF’ to
these numbers before writing them back to disk. You can open the new data fi le
in Excel to confi rm the reference numbers have been set by your code.

Include a comma
between each item
when writing to disk.

M01_COMP_REV_BTEC_0185_U01.indd 12 20/07/2017 09:01

Had a look Nearly there Nailed it!

13

Unit 1
Content

Constants and variables
On this page, you will revise the data types you can use to defi ne constants and variables.

Constants and variables
Constants and variables are very similar, with both
naming a place in memory where data can be held.
A constant does not change when code runs,
the contents of a variable is usually changed by
calculations or user input.

Text variables and constants
These can be combined (concatenated), searched
or part of the string can be selected and used,
such as the fi rst three characters.
• Alphanumeric strings are used to hold

combinations of letters from the alphabet and
numbers, such as AB3076.

• A character is a single letter or number such
as A, B, 6. A string is one or more characters.
In a program, these variables can be used for
any combination of words, spaces or numbers
such as an address or a name.

• Strings can hold alphanumeric characters
as well as other characters including escape
codes such as CrLf (carriage return/line feed).

Numeric variables and constants
• Floating point (real) variables are used to

contain numbers which may have a fractional
part. These variables can hold a range of
values which depends upon the type used. A
single has a range of -3.402 823 5E+38 to
3.402 823 5E+38, using 4 bytes of memory. A
double is ±1.797 693 134 862 315 70E+308
and uses 8 bytes of memory.

• Integer variables and constants are used to
contain whole numbers. These variables can
hold a range of values, which depends upon
the type of integer used. A short integer has
a range of –32 768 to 32 767, using 2 bytes
of memory. A long integer has a range of
–2 147 483 648 to 2 147 483 647 and uses
4 bytes of memory.

Date/time
Declaring a variable as a date can save the
programmer a lot of effort as there are functions
available to calculate dates, such as DateAdd,
and these variables can show the date in
whatever format is required for the app.
A date variable can also be used for time. The
actual content of date variable is a number with
the whole part the date (number of days since
1 January 1900) and the fractional part the time,
e.g. 6 am is .25, midday is .5 and so on.

Boolean
A Boolean variable has only two possible values –
true or false.
It is a good data type for use in a conditional
statement, such as IF Found THEN, where Found
is the Boolean variable.
Boolean variables can also be used to represent
objects, such as option buttons in code.

Arrays
An array is a variable which can contain many
different values, each of these identifi ed by the
subscript (number) inside brackets at the end of
the array name. A lot of code uses arrays to hold
data records for the program.

Write code which uses six diff erent data types to hold information entered by the
user. Process each of the entries using a method appropriate to the data type,
for example, Boolean, to make a decision, using appropriate output to show the
results of your processing.

Decide upon the data
types with what you’ll
do with them before
you start coding.

For more on arrays,
see page 23.Links

M01_COMP_REV_BTEC_0185_U01.indd 13 20/07/2017 09:01

Had a look Nearly there Nailed it!

14

Unit 1

 Content

Managing variables
You need to revise the difference between local and global variables and when to use them, as well as
the use of naming conventions to give meaningful names to objects in your code.

Managing variables
Managing variables helps to get the best
performance from an app in terms of reliability,
although there can be a very small reduction in
speed due to the creations and releasings of
local variables.
The minor speed hit is more than compensated
for by the extra reliability due to much more
control over where variables exists in the code.
Good program design is very clear on where a
variable is used or changed and so if another part
of the code tries to use such a variable an error
is generated to alert the programmer.

Global and local variables
The scope of a variable defi nes which parts of the
code can see or use it.
A global variable exists everywhere in the code
and only ceases when the app closes.
A local variable exists inside a subroutine or
function subprogram whilst that code is running
then ceases when the subprogram ends.
If a subroutine calls another subroutine, any local
variables in the calling subprogram would not be
seen by the called subroutine unless passed in as
a parameter.

Create a poster showing how the scope of variables aff ects where they can be
used in a program.

You can use circles to
show each scope.

Naming conventions
The programmer has a lot of choice of the names
of variables used in code, although there are a
number of reserved words, such as open, which
cannot be used as variables because they are
part of the programming language.
A good variable name helps to document the
code because it describes what the variable
contains. Capitalisation can be used to help see
words used in a variable name, e.g. CarColour.
Bad names are anything meaningless or which
mislead about the use of the variable.

Variable names – dos and don’ts
 OKtoGo
 VATdue
 NameOfFile

 oktogo (poor
capitalisation)

 Var1 (meaningless)
 Axx (meaningless)

Parameters
A parameter is an argument in brackets after
the name of a subroutine or function code
passing a value into this code.
A parameter is a local variable to the
subroutine or function unless it is defi ned
by reference, in which case it is the same
variable as was used by the code calling the
subroutine or function.
The default for a parameter is by value, which
means that what’s inside a variable is passed
into the subroutine or function and so does
not affect this variable elsewhere.

Global variables

Subroutine
Local variables

Subroutine
Local variables

Parameters

Global can be used anywhere;
local and parameters are
private to the subroutine.

M01_COMP_REV_BTEC_0185_U01.indd 14 20/07/2017 09:01

Had a look Nearly there Nailed it!

15

Unit 1
Content

Arithmetic operations
Programming paradigms can be used to implement arithmetic operations, which include mathematical
functions such as + and *, relational operators such as = and <, Boolean operators such as NOT, as
well as date and time.

Boolean operators
Boolean operators can be complex calculations
but always end with a result of True or False.
In these examples:

Car has been set to True
Diesel has been set to False

Opposite (NOT) NOT Diesel True
All of them (AND) Car AND Diesel False
Any of them (OR) Car OR Diesel True

Date/time operators
Usually a date in program code is held internally
as a whole number (the day count from 1/1/1900)
and time as the fractional part of a number,
e.g. .75 is 6pm, so 6pm on 17 October 2017
is held as 43 025.75, so simple arithmetic can
often be used. Excel® has a known bug which
calculates 1900 as a leap year.
Other programming languages make it very diffi cult
for the programmer to reach the underlying
numbers. It is much easier and practical to use the
date and time functions provided.

Mathematical operators
Mathematical operators are plus (+), minus (-),
divide (/ or DIV) and multiply (*). Remember that
the computer will always use BIDMAS (brackets,
indices, divide, multiply, add, subtract) for the
order in which a calculation is worked out.
The following calculation needs to set Pay by
working out the HourRate + Supplement before
multiplying by Hours, but gives a wrong result:
Pay = HourRate + Supplement * Hours
This is because brackets should be used to
calculate the addition before multiplying:
Pay = (HourRate + Supplement) * Hours

Relational operators
Relational operators are frequently used in code,
especially for conditions which control a branch
into a choice of coding routes.
In these examples:

Pay has been set to 3.9
Cost has been set to 4

Equals Pay = Cost False
Less than Pay < Cost True
More than Pay > Cost False
Not equal to Pay <> Cost True
Less than or equal to Pay <= Cost True
More than or equal to Pay >= Cost False

Create an Excel spreadsheet to show expressions illustrating mathematical,
relational, Boolean and date/time operators. Copy and paste another version of
each of your examples so a printed copy shows both the calculation workings
and the result.

Use a single quote (‘)
at the start of each of
the copied examples
so the workings print.

Modulo
When a number is divided into another, the
remainder (rem) is called the modulo or modulus,
(MOD), which is often useful in calculations
carried out by code needing the number remaining
after division.

Modulo operator examples
10 % 3 returns 1 in Python code.
7 mod 4 returns 3 in VB.NET code.
= MOD(4, 3) returns 1 in an Excel cell.
23 rem 4 returns 3 in Prolog code.

M01_COMP_REV_BTEC_0185_U01.indd 15 20/07/2017 09:01

Had a look Nearly there Nailed it!

16

Unit 1

 Content

Arithmetic functions
Arithmetic functions enable you to code arithmetical operations – random, range, round, truncation – in a
program. The Excel spreadsheet is used to demonstrate these arithmetic functions on this page.

Using the range() function
One argument will create a range of integer
numbers from 0 to one before the argument, e.g.
range(5) creates 0, 1, 2, 3, 4.
Two arguments create a range of integer
numbers from fi rst argument to one before the
last, e.g. range(2,6) creates 2, 3, 4, 5.
Three arguments create a range of integer
numbers with the last argument defi ning how much
each item increments, e.g. range(1,12,3) creates
1, 4, 7, 10.
In code, 10 in range(1,4) will return false.

ROUND() and TRUNCATE() functions
These are both used to specify the number of
decimal places showing for a number.
The round() function will adjust a number to fi t with
the least signifi cant digit rounded up or down.
The truncate() function simply removes any digits
that do not fi t.

Using the random() function
The random() function will usually generate a
random number larger than 0 and less than 1.
Some programming languages accept an argument
inside the brackets to defi ne the largest random
number that can be produced.
Excel offers the RANDBETWEEN() function which
accepts two arguments to defi ne the scope of
random numbers that are generated.

Arithmetic functions
random() Generates a random number.
range() Creates an array of elements

using the range of values in the
brackets.

round() Rounds a number up or down to
the nearest whole number.

truncation() Rounds a number down to the
number of decimal places in the
brackets.

Create an Excel spreadsheet to generate test data where the A column contains
random numbers between 3 and 50, the B column a random date up to a year
before today (assuming 365 days in the year) and the C column a random letter
between A and Z.

Use the NOW()
function as part of your
calculation for the date.
Use the CHAR()
function as part of your
calculation for the letter.

Round and Trunc

RAND and RANDBETWEEN

M01_COMP_REV_BTEC_0185_U01.indd 16 20/07/2017 09:01

Had a look Nearly there Nailed it!

17

Unit 1
Content

String handling and general functions
String handling and other built-in general functions convert between different types of number and
strings and perform general operations such as dealing with data fi les and printing.

String conversions
Converting to numeric allows code to use numbers stored
as strings in calculations. CInt() converts to integer,
CDbl() to double data type for fl oating point (fl oat)
numbers. CStr() can convert a number into string if there
is need for searching or extracting part of the number.

Input and open functions
Input lets users enter into a variable. This Python
code shows a prompt of ‘How many?’, storing the
response in Quantity:response in Quantity:response in Quantity:

Quantity = input(“How many?”)

Open connects code to a data fi le with an
argument defi ning type of access, e.g. read,
write. This Python example shows a fi le,
Data.csv, being opened to read the data:Data.csv, being opened to read the data:

DataFile = open(“Data.csv”,”r”)

Range and print
Range is a function to return a range object. This
Excel code example shows a calculation, =Rand(),
being entered into a range of cells:being entered into a range of cells:being entered into a range of cells:

Range(“A2:D12”).Formula = “=Rand()”

Print sends text to screen or other output
such as a data fi le. This Python code writes the
contents of a variable, DataVar to a fi le, data.txt,
opened in write mode as DataFile:opened in write mode as DataFile:

DataFile = open(“data.txt”,”w”)
print(DataVar, file=DataFile)

Create code to extract and use part of a date converted to string
in a short sentence as described in the Making it work box above.

Use some form of console
or message box output to
check what is in the variables
as you develop this code.

Manipulating strings
• Concatenation is joining together two or

more strings. The ‘+’ character is used for
concatenantion by C, Java, Python,
VB.NET among others whilst the ‘&’ character
is unique to Visual Basic. With numbers, ‘+’
performs addition, but it concatenates strings.

• Length is how many characters are in a string.
Many languages have a len() function to return
this number.

• Position is where a character or group of
characters are in a string. VB.NET uses the
IndexOf method, Python the fi nd method.

Making it work
The VB.NET code below uses concatenation to
join text with month name extracted from date
variable, DoR, after converting into a string
variable, strDoR. DoR is formatted to “09
January 2017” (long date) before conversion,
so number of characters in the month can be
calculated as length of date string minus 8 (2
digits day, 4 year, 2 spaces around month).
Month position is calculated from 1 more than
index of fi rst space plus 2 (index starts at 0).
When this code runs, MsgText will contain
“This was received in January”

DoR = “9/1/2017”
strDoR = CStr(Format(DoR, “long date”))
MonthLen = Len(strDoR) - 8
DoRpos = strDoR.IndexOf(“ “) + 2
DoRmonth = Mid(strDoR, DoRpos, MonthLen)
MsgText = “This was received in “
MsgText = MsgText & DoRmonth

Search for
matching characters

Number
Carry out

String calculations

Date sent ×

 This was received in January

OK

M01_COMP_REV_BTEC_0185_U01.indd 17 20/07/2017 09:01

Had a look Nearly there Nailed it!

18

Unit 1

 Content

Validating data
Programming paradigms can be used to build effective validation techniques into code, improving the
validity of inputs with post-check actions aiding further accuracy.

Range
Many validation checks ensure inputs are within
a range of values, such as age to make sure
someone is not too young.
An age can be entered into a textbox with simple
validation to ensure a number has been entered
within an acceptable range, such as between 18
and 25.
A date of birth is much better data as this would
still be useful for years after the data entry as an
up-to-date age can be calculated from the current
date obtained from the computer clock.

Constraints
Validation using constraints is essential for data
entry such as a reference number with a clear
structure. A reference number should be fi xed
with a set number and combination of letters
and digits, e.g. STR00234, which are very
straightforward to check. In this example the
fi rst three characters would be letters, the next
fi ve characters constrained to numbers and the
overall number of characters must be eight.

Post-check actions
An app should include post-check actions which
provide feedback to the user on why a validation
check has failed and what the user needs to do
to correct their entry:
• Enforcement action usually clears the bad

data from the screen.
• Advisory action usually keeps the data but

also sends a warning message.
• Verifi cation action asks the user to confi rm

their data is correct.

Validation check techniques
Checking data as it is entered for validity is a
basic technique used in many ways to check the
data type and range with any constraints before
the code attempts to process the entry.
This screening helps to reduce errors and gives
the user the opportunity to correct mistyping at
the time of entering the data.

Data types and boolean
• Checking for the correct data type is basic

validation preventing a lot of data entry errors,
e.g. by rejecting text when a number is needed.

• Boolean logic can be applied to a data entry
where an input could use a choice of validation
rules, e.g. a vehicle registration could be in
the form of XX99XXX or X999XXX.

What validation can be applied to a data entry requiring a UK postcode?

What positions do the letters
and numbers occupy in a
postcode? Are there any
further techniques available?

M01_COMP_REV_BTEC_0185_U01.indd 18 20/07/2017 09:01

Had a look Nearly there Nailed it!

19

Unit 1
Content

For

Next

While

End while

Do

Loop until

Loops
Control structures include loops, also known as iterations, which repeat code as many times as needed.
This page revises how to improve the effectiveness of code iterations by appropriate use of REPEAT,
FOR, WHILE structures and any mechanisms needed to break out of them.

Unconditional loops
The classic unconditional loop is FOR…NEXT where
a loop variable is used to keep count of the number
of iterations with the NEXT line in this structure
used to determine when the loop is complete.

Pre-conditional loops
Conditional loops will continue until an

event occurs or a condition is met.

The condition can be at the start,
e.g. WHILE, which is known as a pre-

conditioned loop, so the code inside the

loop will not be run at all if the condition

is not met when this structure is executed.

Post-conditional loops
If the condition is at the end, e.g. REPEAT
UNTIL or LOOP UNTIL, it is a post-
conditional loop so code inside the loop
will run at least once, even if the condition
is not met as the test is after the body of
the loop.
These structures offer the programmer
more control over how the loop will work.

Produce a guide on appropriate uses for each loop type. Include examples of
how the condition test for a conditional loop can best be used at the start or at
the end of the loop.

Think of a situation
where iteration code
should not be run if a
condition is not met.

Breaking out of a loop
When running a loop, the programming
environment creates a structure which needs to
end properly or there might be problems if the
code runs for a long time.
Programming languages include commands
such as BREAK, EXIT FOR or EXIT DO to fi nish
a loop early.
Most code should not need to exit, as a
conditional loop should respond to such
situations. An unconditional loop requiring an
early exit should probably be conditional.

Using loops
FOR…NEXT looping through arrays

generating test data

WHILE

REPEAT UNTIL

reading in data fi les

checking for user
attempts, e.g. passwords

M01_COMP_REV_BTEC_0185_U01.indd 19 20/07/2017 09:01

Had a look Nearly there Nailed it!

20

Unit 1

 Content

Branches
Branches allow you to make decisions within an algorithm. On this page, you will revise IF…THEN…
ELSE…ELSEIF selections.

Branching with IF
The IF control structure allows codes to divide into separate
pathways, selecting between two or more routes through the
program. This structure starts with the IF...THEN line of code where
a condition is evaluated as true or false. Code immediately after the
IF...THEN line is run if the condition is true as far as the next part of
this structure, which could be:
• ELSEIF to set another condition
• ELSE for code if the condition(s) not met
• ENDIF to complete the structure.

IF WEIGHT < 50 THEN
 SET POSTAGE LABEL TO “Rate A”
 ELSEIF WEIGHT < 100 THEN
 SET POSTAGE LABEL TO “Rate B”
 ELSEIF WEIGHT < 1000 THEN
 SET POSTAGE LABEL TO “Rate C”
 ELSE
 SET POSTAGE LABEL TO “Too heavy”
 ENDIF

If txtWeight.Text < 50 Then
 lblPostage.Text = “Rate A”
ElseIf txtWeight.Text < 100 Then
 lblPostage.Text = “Rate B”
ElseIf txtWeight.Text < 1000 Then
 lblPostage.Text = “Rate C”
Else
 lblPostage.Text = “Too heavy”
End If

Write a program which accepts (and validates) user input of a whole number
between 0 and 48 to represent the points achieved for a test. Your program will
use a select case structure to show ‘Fail’ (0–17), ‘Pass’ (18–25), ‘Merit’ (26–41),
‘Distinction’ (42–47) or ‘Distinction*’ (48) according to the input value.

Be very careful to code
for the grade boundaries
and use test data to
ensure they are met.

The IF condition (number
typed into WEIGHT by
the user), shows Rate A
if less than 50.

Care needs to be taken
with conditions. The
conditions here are
carefully sequenced with
fi rst condition, (<50),
so the next condition,
(<100), is from 50 up to
and not quite 100.

ELSEIF statements
respond to other
weights with ELSE line
running code not met
by any other condition
showing “Too heavy”.

Start

End

Rate A

Weight
<50?

Yes

No

Rate B

Weight
<100?

Yes

No

Rate C

Weight
<1000?

Yes

No
Too heavy

Case
study Postage rates

An app could be written
to allocate a postage rate
according to the weight of a
shipment:

Weight Rate
Below 50 g A
50 g or more
and below 100 g

B

100 g or more
and below
1000 g

C

1000 g or more Too heavy

The app will allow the user
to type a weight into a text
box, txtWeight, then show the
appropriate rate on-screen.

M01_COMP_REV_BTEC_0185_U01.indd 20 20/07/2017 09:01

