## Unit 7 - Ratio and proportion <br> I Use ratio language

## $\rightarrow$ pages 8-11

## Discover

1. a) For every $\mathbf{1}$ adult there are $\mathbf{3}$ children.
b) For every $\mathbf{3}$ bananas there are $\mathbf{2}$ apples. For every $\mathbf{2}$ apples there are $\mathbf{3}$ bananas.

## Think together

1. For every $\mathbf{2}$ cheese sandwiches, there is $\mathbf{1}$ cucumber sandwich.
For every $\mathbf{1}$ cucumber sandwich, there are $\mathbf{2}$ cheese sandwiches.
2. Danny is correct. $8: 6$ simplifies to $4: 3$.
3. a) Both towers have 1 red cube with more than 1 yellow cubes.
The shorter tower has 1 red cube and 2 yellow cubes. The taller tower has 1 red cube and 6 yellow cubes.
b) $\frac{3}{5}$ of the tower is red.
$\frac{2}{5}$ of the tower is yellow.

## 2 Introduce the ratio symbol

## $\rightarrow$ pages 12-15

## Discover

1. a) There are 6 stars and 9 suns. On the t-shirt, for every 2 stars there are 3 suns.
b) On Emma's next t-shirt, for every 1 star there are 3 suns.
The ratio of stars to suns is $1: 3$. There could be 1 star and 3 suns, 2 stars and 6 suns, 3 stars and 9 suns and so on.

## Think together

1. a) For every $\mathbf{1}$ square there are $\mathbf{2}$ circles. Or the ratio of squares to circles is $\mathbf{1 : 2}$.
b) For every $\mathbf{2}$ squares there are $\mathbf{5}$ circles. Or the ratio of squares to circles is $\mathbf{2 : 5}$.
2. Zac and Jamilla are correct, as the number of trucks is double the number of cars, so if there are 12 cars there will be 24 trucks.
Lexi is incorrect. She has mistakenly added the two parts of the ratio together, confusing it with the fraction of the trucks $\left(\frac{2}{3}\right)$ and of the cars $\left(\frac{1}{3}\right)$.
3. Both rectangles have the same ratio. For every 1 white square there are 3 red squares.
The ratio of white to red squares is $1: 3$.
In both rectangles the fraction of white squares is $\frac{1}{4}$
( $\frac{4}{16}$ and $\frac{6}{24}$ both simplify to $\frac{1}{4}$ ).
In both rectangles the fraction of red squares is $\frac{3}{4}$ $\left(\frac{12}{16}\right.$ and $\frac{18}{24}$ both simplify to $\frac{3}{4}$ ).
The rectangles are different sizes.

## 3 Use ratio

## $\rightarrow$ pages 16-19

## Discover

1. a)

b) Children could draw a table or divide 12 by 3 and multiply the answer by 2.
8 children catch the bus.

## Think together

1. There are $\mathbf{5}$ children not wearing a bib.

The ratio of bib to no bib is $2: 1$.
If the 2 parts $=10$, then 1 part will equal 5 .
$0 \div 2=5$
2. a) There are 15 squares.
$1: 3=5: 15$
The number of triangles has increased 5 times, so the number of squares must also increase 5 times. $5 \times 3=15$
b) There are 6 triangles.
$1: 3=6: 18$
The number of squares has increased 6 times
( $18 \div 3=6$ ), so the number of triangles must also increase 6 times.
$6 \times 1=6$
3. a) They need $\mathbf{1 0}$ leaves.

The ratio of conkers to leaves is $3: 2$.
15 conkers $\div 3=5$ groups of 3 conkers
5 groups of 2 leaves $=5 \times 2=\mathbf{1 0}$ leaves
b) 20 is not divisible by 3 so only 18 conkers can be used to make complete groups.
$18 \div 3=6$ groups of 3 conkers
6 groups of 2 leaves $=6 \times 2=12$ leaves
They need $\mathbf{1 2}$ leaves with 18 conkers.

## 4 Scale drawing

## $\rightarrow$ pages 20-23

## Discover

1. a) The row of trees is 8 m long in real life.
b) The perimeter of the sandpit is 28 m in real life.

## Think together

1. a) The length of the flower bed is 30 m in real life. The width of the flower bed is 15 m in real life.
b) The length of the path is 27.5 m in real life.
2. The distance is 90 m in real life.
3. a) Kate is correct. The second plan is 1 cm to 200 cm . $200 \mathrm{~cm}=2 \mathrm{~m}$, so $1 \mathrm{~cm}: 2 \mathrm{~m}$ is the same as 1 cm : 200 cm .
When a scale does not state the units, they are the same units.
b) The height of the roof is 10 m in real life.

## 5 Scale factors

## $\rightarrow$ pages 24-27

## Discover

1. a) The scale factor is 2 .
b) The tree is 4 m tall.

## Think together

1. a) The scale factor is 2 .
b) The scale factor is 3 .
c) The scale factor is 7 .
2. a)

| Scale factor | 2 | 3 | 4 | 5 | 1 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Number of cubes tall | 16 | 24 | 32 | 40 | 12 |

b) The scale factor is 6 .
c) The scale factor is $7 \frac{1}{2}$.
3. a) To enlarge a shape by a scale factor of 2 means all the dimensions have been doubled ( $\times 2$ ).
b) To enlarge a shape by a scale factor of 3 means all the dimensions are trebled ( $\times 3$ ).
c) To enlarge a shape by a scale factor of $\frac{1}{2}$ means all the dimensions are halved $(\div 2)$.
Children should draw various pairs of shapes to show scale factors of 2,3 and $\frac{1}{2}$.

## 6 Similar shapes

## $\Rightarrow$ pages 28-31

## Discover

1. a) If two shapes are similar, then matching sides are all in the same ratio.
Each side of Zac's larger rectangle is double the size of his smaller rectangle (the ratio is $1: 2$ ), so the rectangles are similar.
One side of Lexi's larger triangle is double the size of the smaller one, but the other (vertical) side is not doubled ( $2 \times 4=8$ not 7 ), so her triangles are not in the same ratio and are not similar.
b) Making the vertical side of the larger triangle 8 units would make the triangles similar.

## Think together

1. a) The scale factor is 2.
b) The length is 20 .
c) The dimensions increase 3 times ( $\times 3$ ). The length will be 30 and the width 24 .
2. The scale factor is 10 .
$1.5 \times 10=15$ or $15 \div 1.5=10$.
3. a) $a: b=1: 2$
b) $\mathrm{b}: \mathrm{c}=1: 1 \cdot 5=2: 3$
c) Children should draw 2 shapes where the dimensions of the second shape are 5 times the dimensions of the first shape. Children should draw 2 shapes where the dimensions of the second shape are half the dimensions of the first shape.

## 7 Ratio problems

## $\rightarrow$ pages 32-35

## Discover

1. a) The ratio of long to round balloons is $2: 3$.
b) There are 12 long and 18 round balloons.

## Think together

1. a) 7 children do karate. $21 \div 3=7$
b) 14 children do tennis.
$21 \div 3=7$
$7 \times 2=14$
2. $154 \div(2+5)=154 \div 7=22$
$22 \times 2=44$
6A raises $£ 44$.
$22 \times 5=110$
6B raises $£ 110$.
3. a) Explanations may vary but answers should focus on sharing balloons between parts.
b) For Think together question 1: Children need to show the ratio karate : tennis is $1: 2$. The bar model needs to show a total of 21 with parts of 7 for karate and 14 for tennis. Children should be able to show they reach the correct answers for this question.
For Think together question 2: Children need to show the ratio 6A: 6B is $2: 5$. The bar models need to show parts to make $£ 44$ for 6 A and parts to show $£ 110$ for 6B. Children should be able to show they reach the correct answers for this question.

## 8 Problem solving - ratio and proportion (I)

## $\rightarrow$ pages 36-39

## Discover

1. a) $48 \div 4 \times 6=72$. Toshi needs $\mathbf{7 2} \mathbf{g}$ of curry paste for 6 people.
b) $3 \div 4 \times 6=4 \frac{1}{2}$. Toshi needs $4 \frac{1}{2}$ peppers for 6 people, so he does not have enough.

## Think together

1. a) $240 \div 12 \times 15=300$. Andy needs $\mathbf{3 0 0} \mathrm{g}$ of flour.
b) $300 \div 12 \times 10=250$. Andy needs $\mathbf{2 5 0} \mathrm{g}$ of butter.
c) $120 \div 12=10.200 \div 10=20$. Andy could make 20 cupcakes.
2. | Number of people | 3 | 6 | 15 | 30 | 40 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Total cost | $£ 7.50$ | $£ 15$ | $£ 37.50$ | $£ 75$ | $£ 100$ |
3. a) $6 \times 20$ minutes $=120$ minutes

120 minutes $\div 3$ pairs $=40$ minutes
Each pair would get 40 minutes.
b) 120 minutes $\div 8$ pairs $=15$

Each pair would get 15 minutes.

## 9 Problem solving - ratio and proportion (2)

## $\rightarrow$ pages 40-43

## Discover

1. a) 200 ml feed $=800 \mathrm{ml}$ water

50 ml feed $=800 \div 4=200 \mathrm{ml}$ of water
350 ml feed $=7 \times 200=1,400 \mathrm{ml}$ of water
Sofia needs to add $\mathbf{1 , 4 0 0} \mathbf{~ m l}$ of water to 350 ml of tomato feed
b) $1,200 \div 3=400 \mathrm{ml}$

The small plant gets $\mathbf{4 0 0} \mathbf{~ m l}$ of feed.
$400 \times 2=800 \mathrm{ml}$
The big plant gets $\mathbf{8 0 0} \mathbf{~ m l}$ of feed.

## Think together

1. $27 \div 3=9$
$9 \times 2=18$
There are $\mathbf{1 8}$ children with winter birthdays at the club.
2. $3 \times 110=330 \mathrm{~g}$
$110+330=440 \mathrm{~g}$
The total mass of the parcels is $\mathbf{4 4 0} \mathrm{g}$.
3. $784 \div 7=112 \mathrm{~km}$

First day $=1 \times 112=112 \mathrm{~km}$
Second day $=2 \times 112=224 \mathrm{~km}$
Third day $=4 \times 112=448 \mathrm{~km}$
She travels $\mathbf{2 2 4} \mathbf{~ k m}$ on the second day.

## End of unit check

## $\rightarrow$ pages 44-45

1. D
2. A
3. $C$
4. D
5. C
6. 156 g

1 cube $=80 \mathrm{~g} \div 4=20 \mathrm{~g}$
8 cubes $=160 \mathrm{~g}$
5 spheres $=200 g-160 g=40 g$
1 sphere $=40 \mathrm{~g} \div 5=8 \mathrm{~g}$
7 cubes +2 spheres $=7 \times 20 g+2 \times 8 \mathrm{~g}=140 \mathrm{~g}+16 \mathrm{~g}$
$=156 \mathrm{~g}$
7. There are $\mathbf{1 0 8}$ shapes altogether.
$63 \div 7=9$.
There are 9 groups of 7 circles, 3 squares and 2 diamonds.
$63+9 \times 3+9 \times 2=63+27+18=108$
Or there are 12 shapes in the pattern.
$12 \times 9=108$

## Unit 8 - Algebra

## I Find a rule - one step

## $\rightarrow$ pages 48-51

## Discover

1. a) The number of legs is four times the number of frogs:
$4 \times a$ (where $a$ is the number of frogs).
b) Where $a$ is the number of frogs, the number of eyes is $2 \times a$ and the number of mouths is $1 \times a$.

## Think together

1. a) Outputs: $3,6,9,12,15,36,3 \times n(3 n)$
b) Outputs: $11,12,13,14,26,119, n+10$
2. Number of shells: $6,12,18,24, m \times 6(6 m)$
3. a) Jen's age: $34,35,36,51, n+26$
b) Ebo's age: $0,10,21,33, y-47$
c) If $p$ is Amal's age, $p+10=$ Mrs Dean's age When Amal is 75 , Mrs Dean will be $75+10=\mathbf{8 5}$. $p=$ Mrs Dean's age -10 When Mrs Dean is 100, Amal will be $100-10=\mathbf{9 0}$.

## 2 Find a rule - two steps

## $\rightarrow$ pages 52-55

## Discover

1. a) There will be $7+n \times 2$ geese in total (where $n$ is the number of pairs of geese).
b) No, Richard is not correct because there will never be exactly 100 geese. The rule adds on a multiple of 2 to 7 , so the answer will always be an odd number.

## Think together

1. a) Outputs: $8, \mathbf{1 1}, \mathbf{1 4}, \mathbf{2 0}, \mathbf{2 6}, 35$
b) $n \times 3+5($ or $3 n+5)$
2. Money left: $13,11,9,15-2 \times a$ (or $15-2 a)$
3. To make 3 squares, $4+3 \times \mathbf{2}$ sticks are used. To make 4 squares, $4+3 \times \mathbf{3}$ sticks are used. To make $n$ squares, $4+3 \times(\boldsymbol{n} \mathbf{1})$ sticks are used.

## 3 Form expressions

## $\rightarrow$ pages 56-59

## Discover

1. a) The number of Mo's badges is $d+6$.

The number of Jamilla's badges is $(d+6) \times 2$.
b) $4+6=10$

Mo has 10 badges.
$(4+6) \times 2=20$ badges
Jamilla has 20 badges.

## Think together

1. a) $3 \times 5+2=17$

Bella has 17 snow globes.
b) The top bar of the model shows the number of Amelia's snow globes as the letter s.
The bottom bar shows the number of Bella's snow globes.
c) $3 \times s+2(o r 3 s+2)$
2. $7, \mathbf{1 0}, \mathbf{2 5}, \mathbf{2 5} 5,(\mathbf{n}+\mathbf{1 0}) \div \mathbf{2}$
3. There are many possible solutions if the first function is a multiplication and the second is either an addition or subtraction. For example, $\times 2+2 ; \times 3+1$; $\times 5-1$.
There is only one solution where an addition is followed by a multiplication: +1×2.
There are several solutions with an addition followed by a division. For example, $+7 \div 2 ;+11 \div 3$.
There are many possible solutions using a combination of 2 additions or an addition and a subtraction. For example, $+4-1 ;+1+2$.

## 4 Substitution (I)

## $\rightarrow$ pages 60-63

## Discover

1. a) $5,10,15,20, n \times 5$ (or $5 n$ )

The rule is $5 n$ which means $n \times 5$.
If $n=13,5 n=5 \times 13=65$ points
If the value of $n$ is 13 , you will have $\mathbf{6 5}$ points.
b) If $n=23$, you will have $\mathbf{1 1 5}$ points.

Method 1: $5 \times 23=115$
Method 2: $5 \times 13+5 \times 10=65+50=115$

## Think together

1. a)

| Number of <br> lightning bolts <br> collected | Points for <br> Level 2 |
| :--- | :--- |
| I | $\mathrm{I} 5 \times \mathrm{I}=15$ |
| 2 | $15 \times 2=30$ |
| 3 | $15 \times 3=45$ |
| $m$ | $15 \times m=15 m$ |

b) When $m=9$, points $=135$

When $m=10$, points $=150$
When $m=11$, points $=165$
2. a)

| Spikes hit | Points remaining |
| :--- | :--- |
| 1 | $100-3 \times 1=97$ |
| 2 | $100-3 \times 2=94$ |
| 3 | $100-3 \times 3=91$ |
| $k$ | $100-3 \times k$ |

b) When $k=10,100-3 \times 10=100-30=70$

When $k=20: 100-3 \times 20=100-60=40$
When $k=30: 100-3 \times 30=100-90=10$
c) When $k=33$ : $100-3 \times 33=100-99=1$

When $k=34$ : $100-3 \times 34=100-102=-2$
$k=34$ means you lose all your 100 points.
3. a)

|  | $2 p+1$ | $2 p-1$ |
| :--- | :--- | :--- |
| Substitute $p=1$ | $2 \times 1+1=3$ | $2 \times 1-1=1$ |
| Substitute $p=15$ | $2 \times 15+1=31$ | $2 \times 15-1=29$ |
| Substitute $p=101$ | $2 \times 101+1=203$ | $2 \times 101-1=201$ |
| Substitute $p=1,213$ | $2 \times 1,213+1=2,423$ | $2 \times 1,213-1=2,425$ |

Children should notice that the answer is always odd because $2 p$ always gives an even number.
b) Various answers are possible, depending on the numbers substituted for $p$. Children should notice that the answer is always odd because 10 p gives an even number.

## 5 Substitution (2)

## pages 64-67

## Discover

1. a) If $t$ is the number of hours, the rule is $20 \times t$ (or 20 t ).
b) If $n$ is the number of hours, the rule is $50+20 \times n$ (or 50 + 20n).

## Think together

1. The expression is $150-\mathbf{2} \mathrm{w}$.

| Number of days | Litres of water left <br> in the barrel |
| :--- | :--- |
| 1 | $150-2 \times 1=148$ |
| 2 | $150-2 \times 2=146$ |
| 3 | $150-2 \times 3=144$ |
| 4 | $150-2 \times 7=136$ |
| 7 | $150-2 w$ |
| $w$ |  |

2. a) $720-\mathbf{2 0} y$

| bime taken | Your calculation | Sand left in the <br> hourglass (grams) |
| :--- | :--- | :--- |
| 10 minutes | $720-20 \times 10$ | 520 g |
| 20 minutes | $720-20 \times 20$ | 320 g |
| 30 minutes | $720-20 \times 30$ | 120 g |

3. a) $m+10$
$m-30$
$\frac{1}{3} m, \frac{1}{3} m, \frac{1}{3} m$
$2 m+12$
b) When $m=48$ :
$m+10=48+10=58$
$m-30=48-30=18$
$\frac{1}{3} m+\frac{1}{3} m+\frac{1}{3} m=16+16+16=48$
$2 m+12=2 \times 48+12=96+12=\mathbf{1 0 8}$

When $m=24$ :
$m+10=24+10=\mathbf{3 4}$
$m-30+30=\mathbf{2 4}$
$\frac{1}{3} m+\frac{1}{3} m+\frac{1}{3} m=8+8+8=\mathbf{2 4}$
$2 m+12=2 \times 24+12=60$

## 6 Formulae

## $\rightarrow$ pages 68-71

## Discover

1. a) Perimeter of a regular pentagon:
$a+a+a+a+a=a \times 5=5 a$
Perimeter of a regular hexagon:
$a+a+a+a+a+a=a \times 6=6 a$
b) When $a=6$ :
$5 a=5 \times 6=\mathbf{3 0} \mathbf{c m}$
$6 a=6 \times 6=36 \mathrm{~cm}$
When $a=12$ :
$5 a=5 \times 12=\mathbf{6 0} \mathbf{c m}$
$6 a=6 \times 12=72 \mathrm{~cm}$
Children should notice that when the value of $a$ is doubled, the perimeter of each shape is also doubled.

## Think together

1. a) Perimeter $=a+b+a+b=2 a+2 b$

Children might also find the answer as $(a+b) \times 2$.
b) Perimeter $=2 \times 10+2 \times 8=20+16=36 \mathrm{~m}$
2. a) Area $=a \times b$
b) Area of the shape $=7 \times 5=35 \mathrm{~cm}^{2}$
3. a) Children should use a pair of letters, such as $a$ and $b$, to write the equation $a+b=b+a$.
b) Children use a pair of letters to write the equations:
$(a+b) \times c=a \times c+a \times b$
$(a+b) \times c=a \times c+a \times b$
$a \times(b+c)=a \times b+a \times c$

## 7 Form and solve equations

## $\rightarrow$ pages 72-75

## Discover

1. a) The $c$ represents the cost of the kayak.
$80+$ c represents the total cost of the surfboard and the kayak.
$80+c=230$ means that the total of the surfboard and the kayak is equal to $£ 230$.
b) Several answers are possible. For example:
example,
$230-80=150$.
The cost of the kayak is $\mathbf{£ 1 5 0}$.

Think together

| 1 | 26 |
| :--- | :--- |
| 2 | 27 |
| 5 | 30 |
| 6 | 31 |
| 7 | 32 |

Children should continue trying numbers to get to the correct result.
2. a) $y-35=85$
$y=85+35=£ 120$
The usual cost of the dinghy is $\mathbf{£ 1 2 0}$.
b) i) $s=360 \div 3$
ii) $360 \div 3=120$

There are $\mathbf{1 2 0}$ wetsuits in 1 crate.
3. Kate
$9+i=45$
Alex
$j-9=45$
Richard
$45=9 h$
Aki
$45=k \div 9$

## 8 Solve one-step equations

## $\rightarrow$ pages 76-79

## Discover

1. a) The mystery weight is 6 kg .

Finding the mystery weight means you can replace the $h$ in $h+36=42$ with 6 to solve the equation.
b) $h+36=42$
$h=42-36$
$h=6$

## Think together

1. a) $y=240-48=\mathbf{1 9 2}$
b) $600=3 a$
2. a) $t+6=24$
$t=24-6$
$t=18$
b) $24=6 \mathrm{~m}$
$m=24 \div 6$
$m=4$
3. a) The second bar model helps to solve the equation $n-10=36$.
The first bar model shows $n+10=36$.
$n-10=36$
$n=36+10$
$n=46$
b) $y+10=25$
$y=15$
$k-10=25$
k=35
$10+g=25 \quad 25-h=10$
$\mathrm{g}=15$
$h=15$
$5 a=30$
$4 b=600$
$a=6$
$b=150$

## q Solve two-step equations

## $\rightarrow$ pages 80-83

## Discover

1. a) $2 a+5=19$
b) Lee's number was 7 .

## Think together

1. Lexi's number is $\mathbf{5}$.
2. a) $5 m+3=58$

$$
5 m=58-3=55
$$

$$
m=11
$$

b) $17=2 q+5$
$2 q=17-5=12$
$q=6$
3. a) The bar model shows that $p=11+3$.

This can be rearranged as $p-3=11$ because they are part of the same fact family.
b) $p-3=11$ $p=14$
c) This bar model shows that $2 p=11+3$.

This can be rearranged as $2 p-3=11$ because they are part of the same fact family.
d) $2 p-3=11$
$2 p=14$
$p=7$

## 10 Find pairs of values

## $\rightarrow$ pages 84-87

## Discover

1. a) The perimeter is $2 a+2 b$ or $(a+b) \times 2$.

| Perimeter of rectangle | $a=?$ | $b=?$ |
| :--- | :--- | :--- |
| 20 | I | q |
| 20 | 2 | 8 |
| 20 | 3 | 7 |
| 20 | 4 | 6 |
| 20 | 5 | 5 |
| 20 | 6 | 4 |

b) Area is $a \times b$.

The greatest area for the enclosure is $5 \times 5=25 \mathrm{~m}^{2}$.

## Think together

1. Other values for $m$ may be used, up to $m=15, n=0$.

| $m=?$ | $n=?$ |
| :--- | :--- |
| 0 | $I 5-0=I 5$ |
| $I$ | $I 5-I=I 4$ |
| 2 | $I 5-2=13$ |
| 3 | $I 5-3=12$ |
| 4 | $I 5-4=I I$ |
| 5 | $I 5-5=10$ |

2. $y \times z=36$

| $y=?$ | $z=?$ |
| :--- | :--- |
| 1 | 36 |
| 2 | 18 |
| 3 | 12 |
| 4 | 9 |
| 6 | 6 |
|  |  |

3. a) $x=0, y=10$
$x=1, y=9$
$x=2, y=8$
$x=3, y=7$
$x=4, y=6$
$x=5, y=5$
$x=6, y=4$
$x=7, y=3$
$x=8, y=2$
$x=9, y=1$
$x=10, y=0$
Children should notice that if they plot the values on the grid, they form a straight line.
b) $x=0, y=1$
$x=1, y=2$
$x=2, y=3$
$x=3, y=4$
$x=4, y=5$
$x=5, y=6$
$x=6, y=7$
$x=7, y=8$
$x=8, y=9$
$x=9, y=10$
Children should notice that if they plot the values on the grid, they form a straight line.

## II Solve problems with two unknowns

## $\rightarrow$ pages 88-91

## Discover

1. a) $2 a+4 y=10$

The possible solutions are 1 chicken and 2 rabbits or 3 chickens and 1 rabbit.
b) There cannot be 2 or 4 chickens in the shelter, because this would mean there would have to be half a rabbit. 2 chickens $=4$ legs, leaving 6 rabbit legs, and 4 chickens $=8$ legs, leaving 2 rabbit legs.

## Think together

1. $\mathbf{6} m+\mathbf{4} n=30$

Possible solutions with all tables filled are:
$m=1, n=6(6+24=30)$
$m=3, n=3(18+12=30)$
$m=5, n=0(30+0=30)$
$m=2$ leaves 18 which is not divisible by 4 .
$m=4$ leaves 6 which is not divisible by 4 .
30 is not divisible by 4, so there cannot be only tables of 4 .
2. There are $\mathbf{2 3}$ chickens and $\mathbf{1 2}$ rabbits in total.
3. a) $100=20 a+10 b$

| $a=0$ | $b=10$ |
| :--- | :--- |
| $a=1$ | $b=8$ |
| $a=2$ | $b=6$ |
| $a=3$ | $b=4$ |
| $a=4$ | $b=2$ |
| $a=5$ | $b=0$ |
| $100=10 c-20 d$ | $d=0$ |
| $c=10$ | $d=0.5$ |
| $c=11$ | $d=1$ |
| $c=12$ | $d=1.5$ |
| $c=13$ | $d=2$ |
| $c=14$ | $d=2.5$ |

b) $d+30=y-70$

| $d=1$ | $y=101$ |
| :--- | :--- |
| $d=2$ | $y=102$ |
| $d=3$ | $y=103$ |
| $d=4$ | $y=104$ |

$y$ is always 100 more than $d$.

| $20 s=100-2 t$ | $t=50$ |
| :--- | :--- |
| $s=0$ | $t=40$ |
| $s=1$ | $t=30$ |
| $s=2$ | $t=20$ |
| $s=3$ | $t=10$ |
| $s=4$ | $t=0$ |

As the value of $s$ increases by 1 , the value of $t$ decreases by 10 .

## End of unit check

## pages 92-93

1. C
2. $D$
3. A
4. D
5. A
6. $w=8$
7. Various answers are possible. a should be a number between 0 and 30.

## Unit 9 - Decimals

## I Place value to 3 decimal places

## $\rightarrow$ pages 96-99

## Discover

1. a) Reena has made the number 0.37 . Andy has made the number 61.7.
b) The value of the digit 7 is 7 hundredths in Reena's number.
The value of the digit 7 is 7 tenths in Andy's number.

## Think together

1. a) 0.25
3.57

## 15.7

b) The value of the digit 5 in each number is: 5 hundredths 5 tenths 5 ones
2. Emma is incorrect. She has made the number 0.307.
3. a)

b) $0.3+0.08=\mathbf{0 . 3 8}$
$7+0.3+0.06=\mathbf{7 . 3 6}$
$6+0.02+0.004=\mathbf{6 . 0 2 4}$

## 2 Round decimals

## $\rightarrow$ pages 100-103

## Discover

1. a) The athlete has jumped 2.8 m .
b) 2.8 m to the nearest whole metre is 3 m .

## Think together

1. a) $6 \cdot 2$ rounds to 6 .
c) 6.5 rounds to 7 .
b) 6.75 rounds to 7 .
d) 6.415 rounds to 6 .
2. a) Jamie has rounded to the nearest whole number instead of to one decimal place.
b) $3 \cdot 3$
3. a) $4 \cdot 37$ rounds to $\mathbf{4 \cdot 4}$. $16 \cdot 14$ rounds to $\mathbf{1 6 \cdot 1}$. $5 \cdot 349$ rounds to $\mathbf{5 \cdot 3}$.
b) Children should explain looking at the thousandths digit to round to 2 decimal places. $8>5$ so 8.158 rounds up to 8.16 .

## 3 Add and subtract decimals

## $\rightarrow$ pages 104-107

## Discover

1. a) There are $\mathbf{9 . 3 8}$ litres in total.
b) $\mathbf{0 . 6 2}$ litres will be needed to fill the bottle.

## Think together

1. a) $3 \cdot 6+4 \cdot 9=\mathbf{8 . 5}$
b) $2 \cdot 08+3 \cdot 55=\mathbf{5 . 6 3}$
c) $16 \cdot 8+29 \cdot 5=\mathbf{4 6} \cdot \mathbf{3}$
2. a) $5 \cdot 1-3 \cdot 6=\mathbf{1} \cdot 5$
b) $0.964-0.183=\mathbf{0 . 7 8 1}$
c) $26 \cdot 7-23.9=2.8$
3. a) Emma has not written the digits for 6.5 in the correct columns.
6.5 is 6 ones and 5 tenths, not 6 tenths and 5 hundredths.
b) $6.5+3.84=\mathbf{1 0 . 3 4}$
c) $2.34+0.172=\mathbf{2 . 5 1 2}$
$35.8+6.14=\mathbf{4 1 . 9 4}$
$7.5-3.16=4.34$
$0.4-0.157=\mathbf{0 . 2 4 3}$

## 4 Multiply by IO, 100 and I,000

## $\rightarrow$ pages 108-111

## Discover

1. a) The mass of 10 plates is 3 kg .
b) The mass of 100 plates if 30 kg .

## Think together

1. Ambika: $1.5 \times 10=15$

$$
1.5 \times 100=\mathbf{1 5 0}
$$

$$
1.5 \times 1,000=\mathbf{1 , 5 0 0}
$$

Lee: $\quad 0.36 \times 10=\mathbf{3 . 6}$ $0.36 \times 100=\mathbf{3 6}$ $0.36 \times 1,000=\mathbf{3 6 0}$
Children should notice that the digits stay the same but their values increase.
2. a) $5 \cdot 2 \times 10=\mathbf{5 2}$ $5.2 \times 100=\mathbf{5 2 0}$
b) $0.12 \times 10=\mathbf{1 . 2}$ $5.2 \times 100=\mathbf{5 0 2}$ $1.02 \times 100=\mathbf{1 0 2}$ $10.02 \times 1,000=\mathbf{1 0 , 0 2 0}$
c) $50.2 \times 10=\mathbf{5 0 2}$
$5.02 \times 1,000=\mathbf{5 , 2 0 0}$
$0.502 \times 1,000=\mathbf{5 0 2}$
3. Multiplying by 10 and then 10 again is the same as multiplying by 100 because $10 \times 10=100$. Both increase the value of each digit 100 times.

## 5 Divide by 10,100 and I,000

## $\rightarrow$ pages 112-115

## Discover

1. a) Each child makes 1.2 m of paper chain.
b) $36 \div 100=\mathbf{0 . 3 6}$

## Think together

1. Reena is correct. Dividing by 10 moves each digit one place to the right.
Children should draw a diagram to show
$12 \cdot 3 \div 100=\mathbf{0 \cdot 1 2 3}$. They should draw a place value table showing how tens, ones and tenths move to tenths, hundredths and thousandths.
2. a) $63 \div 10=\mathbf{6} \cdot \mathbf{3}$
b) $717 \div 10=\mathbf{7 1 . 7}$
$63 \div 100=\mathbf{0 . 6 3}$
$717 \div 100=\mathbf{7 \cdot 1 7}$
$63 \div 1,000=\mathbf{0 . 0 6 3}$
$717 \div 1,000=\mathbf{0 . 7 1 7}$
3. a) Danny has divided 6.5 by 10 to find a whole when he needs to multiply 6.5 by 10 to find the missing part.
b) $\mathbf{6 5 \div 1 0 = 6 . 5}$
c) $40 \div 10=4$
$350 \div 100=3.5$
$5.8 \div 10=0.58$
$60 \div 100=0.6$

## 6 Multiply decimals by integers

## $\rightarrow$ pages 116-119

## Discover

1. a) The fence section is 1.8 m tall.
b) The whole fence will be 5.6 m long.

## Think together

1. a) $0.2 \times 4=\mathbf{0 . 8}$
b) $0.4 \times 3=\mathbf{1 . 2}$
c) $0.7 \times 4=\mathbf{2 . 8}$
2. a) $0.4 \times 2=\mathbf{0 . 8}$
$0.4 \times 3=\mathbf{1 . 2}$
b) $0.06 \times 2=\mathbf{0 . 1 2}$
$0.06 \times 3=\mathbf{0 . 1 8}$ $0.4 \times 4=\mathbf{1 . 6}$
$0.06 \times 4=\mathbf{0 . 2 4}$ $0.4 \times 5=\mathbf{2 . 0}$ $0.06 \times 5=\mathbf{0 . 3}$
Children should mention using multiplication tables to find the answers.
3. a) 0.3 is ten times smaller than 3 so the answer to
$32 \times 0.3$ is ten times smaller than $32 \times 3$.
$32 \times 0.3=96 \div 10=9.6$
b) $12 \times 0.07=\mathbf{0 . 8 4} \mathbf{m}^{\mathbf{2}}$
$30 \times 0.5=15 \mathbf{~ m}^{2}$
$4 \times 0.9=\mathbf{3 . 6} \mathbf{m}^{\mathbf{2}}$

## 7 Divide decimals by integers

## $\rightarrow$ pages 120-123

## Discover

1. a) The mass of each block is 0.2 kg .
b) 40 blocks will balance an 8 kg crate.

## Think together

1. a) $12 \div 3=4$
b) $1.2 \div 3=\mathbf{0 . 4}$
c) $0.12 \div 3=\mathbf{0 . 0 4}$
2. a) $35 \div 5=\mathbf{7}$
$350 \div 5=\mathbf{7 0}$
$3.5 \div 5=\mathbf{0 . 7}$
$0.35 \div 5=\mathbf{0 . 0 7}$
b) $2.4 \div 8=\mathbf{0 . 3}$
$2.4 \div 3=\mathbf{0 . 8}$
$2.4 \div 4=\mathbf{0 . 6}$
$2.4 \div 6=\mathbf{0 . 4}$
3. a) $4.24 \div 8=\mathbf{0 . 5 3} \mathbf{~ m}$
b) $15 \cdot 6 \div 2=\mathbf{7 . 8}$
$15 \cdot 6 \div 3=\mathbf{5 . 2}$

## 8 Fractions to decimals

## $\rightarrow$ pages 124-127

## Discover

1. a) $\frac{6}{1,000}$ is equivalent to 0.006 .
$\frac{6}{100}$ and $\frac{60}{1,000}$ are equivalent to 0.06 .
$\frac{6}{10}, \frac{60}{100}$ and $\frac{600}{1,000}$ are equivalent to $0 \cdot 6$.
b) $\frac{6}{1,000}$ can be simplified to $\frac{3}{500}$.
$\frac{6}{100}$ and $\frac{60}{1,000}$ can be simplified to $\frac{3}{50}$.
$\frac{6}{10}, \frac{60}{100}$ and $\frac{600}{1,000}$ can be simplified to $\frac{3}{5}$.

## Think together

1. a) $\frac{1}{4}=\mathbf{0 . 2 5}$
$\frac{2}{4}=0.5$
$\frac{3}{4}=\mathbf{0 . 7 5}$
b) $\frac{1}{10}=\mathbf{0 . 1}$
$\frac{2}{10}=\mathbf{0 . 2}$
$\frac{3}{10}=0.3$
$\frac{5}{10}=\mathbf{0 . 5}$
$\frac{7}{10}=\mathbf{0 . 7}$
$\begin{array}{lll}\text { 2. a) } \frac{93}{100}=\mathbf{0 . 9 3} & \frac{12}{100}=\mathbf{0 . 1 2} & \frac{55}{100}=\mathbf{0 . 5 5} \\ \frac{347}{1,000}=\mathbf{0 . 3 4 7} & \frac{250}{1,000}=\mathbf{0 . 2 5} & \frac{73}{1,000}=\mathbf{0 . 0 7 3}\end{array}$
b) $0.6=\frac{6}{10}=\frac{3}{5}$
$0.06=\frac{6}{100}=\frac{\mathbf{3}}{\mathbf{5 0}}$
$0.006=\frac{6}{1,000}=\frac{\mathbf{3}}{\mathbf{5 0 0}}$
$0.23=\frac{23}{100}$
$0.023=\frac{23}{1,000}$
$0.123=\frac{123}{1,000}$
2. a) $1 \cdot 2=\frac{12}{10}=\mathbf{1} \frac{1}{5}$
$0.4=\frac{4}{10}=\frac{2}{5}$
$0.6=\frac{16}{10}=\frac{3}{5}$
$0.8=\frac{8}{10}=\frac{4}{5}$
$1.4=\frac{14}{10}=1 \frac{2}{5}$
$1 \cdot 6=\frac{16}{10}=1 \frac{3}{5}$
$1 \cdot 8=\frac{\mathbf{1 8}}{\mathbf{1 0}}=1 \frac{4}{5}$
b) $0.25=\frac{25}{100}=\frac{1}{4}$
$0 \cdot 125=\frac{125}{1,000}=\frac{1}{8}$
$0.875=\frac{875}{1,000}=\frac{7}{8}$
$0 \cdot 35=\frac{35}{100}=\frac{7}{20}$
$0.95=\frac{95}{100}=\frac{19}{20}$

## End of unit check

## $\rightarrow$ pages 132-133

1. A
2. $C$
3. $B$
4. C
5. C
6. $0 \cdot 875$

## 9 Fraction as division

## $\rightarrow$ pages 128-131

## Discover

1. a) The arrow is pointing to $\frac{3}{8}$.
b) The arrow is pointing to 0.375 .

## Think together

1. 



Children should notice that:

- Converting a proper fraction results in a decimal < 1
- The denominator is the number to divide by
- The numerator is the number to divide into.

2. $\frac{5}{8}=0.625$
$\frac{1}{6}=0.166$
$\frac{1}{9}=0.111$
$\frac{2}{5}=0.4$
3. $\frac{6}{9}=\frac{2}{3}=\mathbf{0} .667 \quad$ simplify then divide
$\frac{3}{25}=\frac{12}{100}=\mathbf{0 . 1 2}$ convert to equivalent fraction in hundredths
$\frac{3}{50}=\frac{6}{100}=\mathbf{0 . 0 6}$ convert to equivalent fraction in hundredths
$\frac{5}{12}=\mathbf{0 . 4 1 7}$
divide
$\frac{300}{450}=\frac{2}{3}=\mathbf{0 . 6 6 7}$ simplify then divide
$\frac{6}{90}=\frac{1}{15}=\mathbf{0 . 0 6 7}$ simplify then divide

## Unit IO - Percentages

## I Understand percentages

## $\rightarrow$ pages 136-139

## Discover

1. a) Mr Jones has painted $\frac{30}{100}$ or $\frac{3}{10}$ of the circles.
b) Mr Jones has painted $30 \%$ of the circles.

## Think together

1. a) $45 \%$
c) $6 \%$
b) $97 \%$
d) $90 \%$
2. Children should shade empty 100 grids to show: 18\%: 1 complete row (or column) and 8 cells in adjoining row (or column).
40\%: 4 complete rows (or columns).
7\%: first 7 cells of top row (or column).
3. $64 \%$ of the grid is shaded.

There are 50 sections in the whole grid, so each section is worth $2 \%$.

## 2 Fractions to percentages

## $\rightarrow$ pages 140-143

## Discover

1. a) $\frac{10}{25}$ or $\frac{2}{5}$ of the wall is painted.
b) $40 \%$ of the wall is painted.

Think together

1. a) $\frac{2}{10}=\mathbf{2 0 \%}$
b) $\frac{1}{4}=\mathbf{2 5 \%}$
2. a) $\frac{7}{10}=\frac{70}{100}=\mathbf{7 0 \%}$
c) $\frac{7}{25}=\frac{28}{100}=\mathbf{2 8 \%}$
b) $\frac{7}{20}=\frac{35}{100}=35 \%$
d) $\frac{7}{50}=\frac{14}{100}=\mathbf{1 4} \%$
3. a) $\frac{6}{20}=\frac{3}{10}=\mathbf{3 0 \%}$
c) $\frac{120}{200}=\frac{60}{100}=\mathbf{6 0 \%}$
b) $\frac{3}{30}=\frac{1}{10}=\mathbf{1 0 \%}$

## 3 Equivalent fractions, decimals and percentages

## $\rightarrow$ pages 144-147

## Discover


b) $\frac{19}{20}=\frac{95}{100}=0.95=95 \%$

## Think together

1. a) $0.55=\mathbf{5 5 \%}$
b) $0.55=\frac{55}{\mathbf{1 0 0}}=\frac{11}{20}$
2. 0.01 is not equivalent to the others. It is equivalent to $\frac{1}{100}$ and $1 \%$.
All the others are equivalent to $\frac{1}{10}, 10 \%$ and $0 \cdot 1$.

| Decimal | Percentage | Fraction |
| :--- | :--- | :--- |
| 0.25 | $25 \%$ | $\frac{1}{4}$ |
| 0.5 | $50 \%$ | $\frac{1}{2}$ |
| 0.65 | $65 \%$ | $\frac{13}{20}$ |
| 0.6 | $60 \%$ | $\frac{3}{5}$ |
| 0.3 | 30 | $\frac{3}{10}$ |
| 0.07 | $7 \%$ | $\frac{7}{100}$ |

## 4 Order fractions, decimals and percentages

## $\rightarrow$ pages 148-151

## Discover

1. a) Lee: 6 out of $20=\frac{6}{20}=\frac{30}{100}=30 \%$. Kate: 7 out of $25=\frac{7}{25}=\frac{28}{100}=28 \%$. Lee was more accurate at the coconut shy.
b) A possible fraction between $28 \%$ and $30 \%$ is $29 \%=\frac{29}{100}$.
A fraction made from a decimal between 0.28 and 0.3 also works, for example, $0.295=\frac{295}{1,000^{\prime}}$ $0.281=\frac{281}{1,000}$ or $0.299=\frac{299}{1,000}$.

## Think together

1. a) $\mathbf{7 3 \%}$ is greater than 0.55 ( $55 \%$ ).
b) $\frac{\mathbf{1 7}}{\mathbf{5 0}}\left(\frac{17}{50}=\frac{34}{100}=34 \%\right)$ is greater than $29 \%$.
c) $\frac{7}{20}\left(\frac{7}{20}=\frac{35}{100}=0.35\right)$ is greater than 0.34 .
2. a) Smallest to largest: $\frac{7}{25}, 0 \cdot 38,45 \%$.
b) $\frac{9}{25}=\frac{36}{100}=36 \% .40 \%>36 \%$ so Aki has improved.
3. Lexi is not correct: $0 \cdot 5=\frac{5}{10}=\frac{50}{100}=50 \%$.

$$
\begin{aligned}
& 0.45=45 \% \\
& 50 \%>45 \%
\end{aligned}
$$

Or 0.5 has 5 tenths but 0.45 only has 4 tenths.
Luis is not correct: $\frac{32}{80}=\frac{4}{10}=40 \%$.

## 5 Simple percentage of an amount

## $\rightarrow$ pages 152-155

## Discover

1. a) There are $\mathbf{1 2}$ motorbikes on the ferry.
b) There are 15 vans on the ferry.
$15-12=3$
There are $\mathbf{3}$ more vans than motorbikes on the ferry.

## Think together

1. a) $10 \%$ of $30=3$ squares covered.
b) $20 \%$ of $30=6$ squares covered.
2. a) $10 \%$ of $120=12$
$20 \%$ of $120=24$
$20 \%$ of a number is double $10 \%$ of that same number.
b) $10 \%$ of $150=15$
$20 \%$ of $75=15$
75 is half of 150 , so $20 \%$ of 75 is the same as $10 \%$ of 150 .
c) $10 \%$ of $80=8$
$90 \%$ of $80=72$
$90 \%$ of 80 is $9 \times 10 \%$ of 80 or $100 \%-10 \%$.
3. a) Various responses are possible. Children might explain:
$10 \%=1 / 10$ so divide 60 by 10
$5 \%$ is half of $10 \%$
$50 \%=1 / 2$ so half 60
$25 \%$ is half of $50 \%$ or $\frac{1}{4}$ of 60 .
b) There are several ways children could work these out, for example:
$\mathbf{1 5 \%}$ of $\boldsymbol{£ 6 0}=10 \%+5 \%=6+3=\boldsymbol{£ 9}$

$\mathbf{7 0 \%}$ of $\boldsymbol{£ 6 0}=10 \% \times 7=6 \times 7=\mathbf{£ 4 2}$
$\mathbf{9 5 \%}$ of $£ \mathbf{£ 0}=100 \%-5 \%=60-3=\boldsymbol{£ 5 7}$

## 6 Percentage of an amount - I\%

## $\Rightarrow$ pages 156-159

## Discover

1. a) $1 \%$ of $500=5$

In a box of 500 bars, there are 5 winning rainbow tickets.
b) In a box of 200 bars, there are 2 winning rainbow tickets.
In a box of 1,000 bars, there are 10 winning rainbow tickets.
In a box of 2,500 bars, there are 25 winning rainbow tickets.

## Think together

1. $3 \%$ of $700 \mathrm{~kg}=21 \mathrm{~kg}$
$8 \%$ of $1,200 \mathrm{~km}=96 \mathrm{~km}$
$7 \%$ of $£ 800=£ 56$
$22 \%$ of $£ 400=£ 88$
2. a) Yes, Reena is correct. $\frac{40}{100}$ means $40 \div 100=0.4$. $1 \%$ of $40=0.4$
b) $7 \%$ of $40=0.4 \times 7=2.8$
c) $17 \%$ of $40=10 \%$ of $40+7 \%$ of $40=4+2 \cdot 8=\mathbf{6} \cdot \mathbf{8}$ or $17 \%$ of $40=17 \times 1 \%$ of $40=17 \times 0.4=\mathbf{6 . 8}$
3. 

|  | Emma's method | Isla's method | Percentage of $£ 40$ |
| :--- | :--- | :--- | :--- |
| $50 \%$ | Divide the whole <br> by 2. | Find I\% and then <br> multiply by 50. | $£ 20$ |
| $25 \%$ | Divide the whole <br> by 4. | Find I\% and then <br> multiply by 25. | $£ 10$ |
| $20 \%$ | Divide the whole <br> by 5. | Find I\% and then <br> multiply by 20. | $£ 8$ |
| $10 \%$ | Divide the whole <br> by I0. | Find I\% and then <br> multiply by IO. | $£ 4$ |

## 7 Percentages of an amount

## $\rightarrow$ pages 160-163

## Discover

1. a) $75 \%$ of 80 kg is 60 kg . Class 1 recycled 60 kg of paper.
b) Class 1 recycled 40 kg more paper than plastic.

## Think together

1. $60 \%$ of $120 \mathrm{~kg}=72 \mathrm{~kg}$ of paper $40 \%$ of $120 \mathrm{~kg}=48 \mathrm{~kg}$ of plastic
2. a) $5 \%$ of $£ 300=£ 15$
b) $55 \%$ of $300 \mathrm{~kg}=165 \mathrm{~kg}$
c) $15 \%$ of $300 \mathrm{~cm}=45 \mathrm{~cm}$
d) $95 \%$ of $300 \mathrm{~km}=285 \mathrm{~km}$
3. Children should discuss various methods to find percentages of 320 and their efficiency. They should draw bar models and grids to help them explain their methods.
Methods might include:
$11 \%=10 \%+1 \%=32+3 \cdot 2=35 \cdot 2$
$11 \%=11 \times 1 \%=11 \times 3.2=35 \cdot 2$
$51 \%=50 \%+1 \%=160+3 \cdot 2=163 \cdot 2$
$9 \%=9 \times 1 \%=9 \times 3.2=28.8$
$9 \%=10 \%-1 \%=32-3 \cdot 2=28 \cdot 8$
$19 \%=20 \%-1 \%=64-3 \cdot 2=60 \cdot 8$
$49 \%=50 \%-1 \%=160-3 \cdot 2=156 \cdot 8$

## 8 Percentages (missing values)

## $\rightarrow$ pages 164-167

## Discover

1. a) The world record for women's long jump is 7.5 m .
b) The world record for men's high jump is 245 cm .

## Think together

1. a) $10 \%$ of $\mathbf{3 0}=3$
b) $20 \%$ of $\mathbf{2 5}=5$
c) $25 \%$ of $\mathbf{1 2 0}=30$
2. There are 300 spectators in total.
3. Here are some possible methods. Parts a) and c) involve working out the whole (100\%) from a given percentage. Part b) is simply finding a percentage of the whole.
a) If $75 \%=30,25 \%=10,100 \%=40$. The number is $\mathbf{4 0}$.
b) $30 \%$ of $120=3 \times 10 \%=3 \times 12=36$ miles Jen has completed $\mathbf{3 6}$ miles of the 120 mile journey.
c) $15 \%$ of the rectangle is $5 \mathrm{~m} \times 12 \mathrm{~m}=60 \mathrm{~m}^{2}$. $1 \%$ of the rectangle $=60 \mathrm{~m}^{2} \div 15=4 \mathrm{~m}^{2}$. $100 \%$ of the rectangle $=\mathbf{4 0 0} \mathbf{m}^{\mathbf{2}}$.

## End of unit check

## $\rightarrow$ pages 168-169

1. A
2. $B$
3. C
4. D
5. $B$
6. $\frac{1}{4}$ of $25,000=6,250 ; 30 \%$ of $25,000=7,500$
$25,000-(6,250+7,500)=11,250$
$\mathbf{1 1 , 2 5 0}$ fans watch the Saturday show.

## Unit II - Measure perimeter, area and volume

## Shapes - same area

pages 172-175

## Discover

1. a) Jen is correct.

Area of Room $A=4 \mathrm{~m} \times 6 \mathrm{~m}=\mathbf{2 4} \mathbf{m}^{\mathbf{2}}$
Area of Room B $=3 \mathrm{~m} \times 8 \mathrm{~m}=\mathbf{2 4} \mathbf{m}^{\mathbf{2}}$
b) Various arrangements are possible. The dimensions will change (for example, $2 \mathrm{~m} \times 12 \mathrm{~m}$ ) but the area will still be $24 \mathrm{~m}^{2}$.

## Think together

1. $A$ and $D$ are both $8 \mathrm{~m}^{2}$.
$B$ and $C$ are both $12 \mathrm{~m}^{2}$.
2. a) Luis is correct. Both shapes have an area of $30 \mathrm{~m}^{2}$.
b) Children should draw rectangles that are 15 cm by 2 cm or 30 cm by 1 cm .
3. a) A: 4 cm by 4 cm

B: 2 cm by 8 cm
C: Various options are possible.
Children should split the composite shape into two rectangles with a combined area of $16 \mathrm{~cm}^{2}$.


For example, Rectangle 1: $12 \mathrm{~cm}^{2}(2 \mathrm{~cm} \times 6 \mathrm{~cm})$ and Rectangle $2: 4 \mathrm{~cm}^{2}(2 \mathrm{~cm} \times 2 \mathrm{~cm})$.
The dimensions could then be (clockwise from top): $2 \mathrm{~cm}, 2 \mathrm{~cm}, 4 \mathrm{~cm}, 2 \mathrm{~cm}, 6 \mathrm{~cm}, 4 \mathrm{~cm}$.
b) Children should draw the shapes accurately on cm squared paper using the dimensions they worked out in part a).

## 2 Area and perimeter

## $\rightarrow$ pages 176-179

## Discover

1. a) Both shapes have the same area $\left(36 \mathrm{~cm}^{2}\right)$ but different perimeters (Lexi 24 cm, Max 26 cm ).
b) There are two possible rectangles: $12 \mathrm{~cm} \times 3 \mathrm{~cm}$ (perimeter of 30 cm or $18 \mathrm{~cm} \times 2 \mathrm{~cm}$ (perimeter of 40 cm ).

## Think together

1. a) Area

Perimeter

$$
\begin{array}{ll}
\text { A } 3 \times 8=24 \mathrm{~cm}^{2} & 3 \times 2+8 \times 2=22 \mathrm{~cm} \\
\text { B } 6 \times 4=24 \mathrm{~cm}^{2} & 6 \times 2+4 \times 2=20 \mathrm{~cm} \\
\text { C } 3 \times 2+6 \times 3=24 \mathrm{~cm}^{2} & 5+6+3+3+2+3=22 \mathrm{~cm}
\end{array}
$$

b) Various answers are possible. For example, children could draw a rectangle with dimensions $2 \mathrm{~cm} \times 12 \mathrm{~cm}$ and perimeter 26 cm , or a range of different composite shapes.
2. The areas are all the same: 28 squares in total, 14 red and 14 yellow.
The perimeters are all different: A $22 \mathrm{~cm}, \mathrm{~B} 26 \mathrm{~cm}$, C 32 cm .
3. Max is not correct. Children should show a counter example. For example, a $6 \times 4$ rectangle has an area of $24 \mathrm{~cm}^{2}$ and perimeter of 20 cm . An $11 \times 2$ rectangle has a smaller area of $22 \mathrm{~cm}^{2}$ but a greater perimeter of 26 cm .

## 3 Area and perimeter - missing lengths

## $\rightarrow$ pages 180-183

## Discover

1. a) The area of Lee's card is $\mathbf{6 4} \mathbf{~ c m}^{\mathbf{2}}$.

The area of Jamilla's card is $\mathbf{6 0} \mathbf{~ c m}^{\mathbf{2}}$.
b) Perimeter $=32 \mathrm{~cm}$ so, length + width $=16 \mathrm{~cm}$. Some possible areas of Mrs Dean's card are:
Area $=13 \times 3=39 \mathrm{~cm}^{2} \quad$ Area $=12 \times 4=48 \mathrm{~cm}^{2}$
Area $=11 \times 5=55 \mathrm{~cm}^{2} \quad$ Area $=7 \times 9=63 \mathrm{~cm}^{2}$

## Think together

1. a) $A: 9 \mathrm{~m}$
B: 5 m
C: 6 m
b) $A: 9 \mathrm{~m}^{2}$
B: $25 \mathrm{~m}^{2}$
C: $24 \mathrm{~m}^{2}$
c) The gardens have the same perimeter but different areas.
2. a) $A$

B
Area $=15 \mathrm{~cm}^{2} \quad$ Area $=13 \mathrm{~cm}^{2}$
Perimeter $=16 \mathrm{~cm} \quad$ Perimeter $=16 \mathrm{~cm}$
They have the same perimeter but a different area.
b) C

Area $=12 \mathrm{~cm}^{2} \quad$ Area $=10 \mathrm{~cm}^{2}$
Perimeter $=14 \mathrm{~cm} \quad$ Perimeter $=14 \mathrm{~cm}$
They have the same perimeter but a different area.
3. a) Width

Length
Area
$2 \mathrm{~m} \quad 13 \mathrm{~m} \quad 26 \mathrm{~m}^{2}$
$3 \mathrm{~m} \quad 12 \mathrm{~m} \quad 36 \mathrm{~m}^{2}$
$5 \mathrm{~m} \quad 10 \mathrm{~m} \quad 50 \mathrm{~m}^{2}$
$7 \mathrm{~m} \quad 8 \mathrm{~m} \quad 56 \mathrm{~m}^{2}$
$11 \mathrm{~m} \quad 4 \mathrm{~m} \quad 44 \mathrm{~m}^{2}$
$13 \mathrm{~m} \quad 2 \mathrm{~m} \quad 26 \mathrm{~m}^{2}$
b) Smallest area $=26 \mathrm{~m}^{2}$

Largest area $=56 \mathrm{~m}^{2}$
c) Yes, Isla is correct. The length + width $=20 \mathrm{~cm}$ (half of 40 cm ). A dimension cannot be zero, so both dimensions have to be $0>$ and $<20$.

## 4 Area of a triangle - counting squares

## $\rightarrow$ pages 184-187

## Discover

1. a) The area of Jamie's triangle is approximately $\mathbf{9} \mathbf{c m}^{2}$.
b) The area of Andy's triangle is approximately $\mathbf{6} \mathbf{c m}^{\mathbf{2}}$.

## Think together

1. a) Approximately $13 \mathrm{~cm}^{2}$
b) Approximately $13 \mathrm{~cm}^{2}$
2. a) Approximately $3 \mathrm{~cm}^{2}$
b) Approximately $3 \mathrm{~cm}^{2}$
3. Answers may vary for half/quarter/less than a quarter depending on children's estimations but the total number of part and whole squares should total to 12 .

| Whole squares | I |
| :--- | :---: |
| Almost-whole squares | I |
| Half squares | 4 |
| Quarter squares | 3 |
| Less than a quarter squares | 3 |

Area: 5

## 5 Area of a right-angled triangle

## $\rightarrow$ pages 188-191

## Discover

1. a) The area of the rectangle is twice the area of each triangle.
b) The area of Reena's triangle is $20 \mathrm{~cm}^{2}$.

## Think together

1. a) Area of rectangle $=\mathbf{3} \mathrm{cm} \times \mathbf{6} \mathrm{cm}=\mathbf{1 8} \mathrm{cm}^{2}$

Area of triangle $=\mathbf{1 8} \mathrm{cm}^{2} \div 2=\mathbf{9} \mathrm{cm}^{2}$
b) Area of rectangle $=\mathbf{2} \times \mathbf{2}=\mathbf{4} \mathrm{cm}^{2}$

Area of triangle $=\mathbf{4} \div \mathbf{2 = \mathbf { 2 } \mathrm { cm } ^ { 2 }}$
c) Area of rectangle $=\mathbf{4} \times \mathbf{1 1}=\mathbf{4 4} \mathrm{cm}^{2}$ Area of triangle $=\mathbf{4 4} \div \mathbf{2 = \mathbf { 2 2 } \mathrm { cm } ^ { 2 }}$
2. a) $8 \mathrm{~cm}^{2}$
c) $7 \mathrm{~cm}^{2}$
b) $5 \mathrm{~cm}^{2}$
d) $22 \mathrm{~cm}^{2}$
3. a) Amelia is correct.

| b) Base | Height |
| :--- | :--- |
| 5 cm | 4 cm |
| 4 cm | 5 cm |
| 2 cm | 10 cm |
| 10 cm | 2 cm |
| 1 cm | 20 cm |
| 20 cm | 1 cm |

## 6 Area of any triangle

## $\rightarrow$ pages 192-195

## Discover

1. a) The area of the triangle on Lexi's sign is $42 \mathrm{~cm}^{2}$.
b) The area of Mo's sign is $600 \mathrm{~cm}^{2}$.

## Think together

1. a) $\operatorname{Area}=(\mathbf{8} \times \mathbf{2}) \div 2$

Area $=8 \mathrm{~cm}^{2}$
b) Area $=(\mathbf{6} \times \mathbf{3}) \div 2$

Area $=\mathbf{9} \mathrm{cm}^{2}$
c) Area $=(\mathbf{1 1} \times \mathbf{4}) \div 2$

Area $=\mathbf{2 2} \mathrm{cm}^{2}$
2. a) Max used the slanting height to calculate the area. He should have used the vertical height.
Area $=(6 \times 5) \div 2=15 \mathrm{~cm}^{2}$
b) Base $=\mathbf{7} \mathrm{cm}$

Height $=\mathbf{4} \mathrm{cm}$
Area $=(7 \times 4) \div 2=\mathbf{1 4} \mathrm{cm}^{2}$
3. a) Both triangles have the same area because they
have the same base and the same vertical height.
b) Children should draw a triangle with the same height as triangle $A$ and $B$ but a wider base.

## 7 Area of a parallelogram

## $\rightarrow$ pages 196-199

## Discover

1. a) The area of the parallelogram is
$30 \mathrm{~cm} \times 20 \mathrm{~cm}=600 \mathrm{~cm}^{2}$.
So, the area of one tile is $600 \mathrm{~cm}^{2}$.
b) Zac's method is $25 \mathrm{~cm} \times 30 \mathrm{~cm}=750 \mathrm{~cm}^{2}$.

Zac is incorrect.
Emma's method is $30 \mathrm{~cm} \times 20 \mathrm{~cm}=600 \mathrm{~cm}^{2}$.
Emma is correct.

## Think together

1. a) $A: 5 \times 6=30 \mathrm{~cm}^{2}$

B: $2 \times 4=8 \mathrm{~cm}^{2}$
C: $2 \times 3=6 \mathrm{~cm}^{2}$
b) A: $5 \times 6=30 \mathrm{~cm}^{2}$

B: $2 \times 4=8 \mathrm{~cm}^{2}$
C: $2 \times 3=6 \mathrm{~cm}^{2}$
Children should notice that the area is the same for both methods.
2. a) $20 \mathrm{~cm}^{2}$
c) $42 \mathrm{~mm}^{2}$
b) $40 \mathrm{~cm}^{2}$
d) $12.6 \mathrm{~m}^{2}$
3. $\mathrm{a}=3 \mathrm{~cm}$
$\mathrm{b}=6 \mathrm{~cm}$

## 8 Problem solving - area

## $\rightarrow$ pages 200-203

## Discover

1. a) $16+20=36 \mathrm{~m}^{2}$
$36-4=32 \mathrm{~m}^{2}$
The total area of the paths is $32 \mathrm{~m}^{2}$.
b) Area of the grass $=80-32=48 \mathrm{~m}^{2}$

The total area of the grass is $48 \mathrm{~m}^{2}$.

## Think together

1. Isla: Whole garden $=6 \times 5=30 \mathrm{~m}^{2}$

2 larger vegetable triangles $=(3 \times 4) \div 2=6 \mathrm{~m}^{2}$
Medium vegetable triangle $=(1 \times 5) \div 2=2.5 \mathrm{~m}^{2}$
Small vegetable triangle $=(1 \times 1) \div 2=0.5 \mathrm{~m}^{2}$
Total $=6+6+2 \cdot 5+0.5=15 \mathrm{~m}^{2}$
Flowers $=30 \mathrm{~m}^{2}-15 \mathrm{~m}^{2}=\mathbf{1 5} \mathbf{m}^{\mathbf{2}}$
Richard: $(4 \times 6) \div 2=12 \mathrm{~m}^{2}$
$(1 \times 6) \div 2=3 \mathrm{~m}^{2}$
Total of flowers: $12+3=15 \mathbf{m}^{\mathbf{2}}$
2. a) Area of the floor $=60 \times 120=\mathbf{7 , 2 0 0} \mathbf{c m}^{\mathbf{2}}$ or $\mathbf{7 2} \mathbf{m}^{\mathbf{2}}$
b) Area of each tile $=(30 \times 30) \div 2=\mathbf{4 5 0} \mathbf{c m}^{2}$ or $\mathbf{4 . 5} \mathbf{m}^{\mathbf{2}}$
c) $72 \div 4 \cdot 5=16$

16 tiles are needed to cover the whole floor.
3. a) Area of the path = Area of the garden - Area of the grass
Area of the path $=45 \mathrm{~m}^{2}-22.5 \mathrm{~m}^{2}$
Area of the path $=\mathbf{2 3} \mathbf{~ m}^{\mathbf{2}}$
b) Area of the grass $=\mathbf{2 2 . 5} \mathbf{~ m}^{\mathbf{2}}$

There is plenty of room for the tent.

## q Problem solving - perimeter

## $\rightarrow$ pages 204-207

## Discover

1. a) Danny ran $150 \mathrm{~m}+150 \mathrm{~m}=300 \mathrm{~m}$.

Ambika ran $55 \mathrm{~m}+71 \mathrm{~m}+150 \mathrm{~m}=276 \mathrm{~m}$.
Danny ran $\mathbf{2 4} \mathbf{~ m}$ more than Ambika.
b) The perimeter of the park $=150 \times 4=600 \mathrm{~m}$.

The perimeter of the field $=150 \times 3+71+55+24$
$=600 \mathrm{~m}$.
The amount of bunting needed would be the same.

## Think together

1. Perimeter of each rectangle is $10+10+5+5=\mathbf{3 0} \mathbf{~ c m}$.
2. Perimeter of the octagon $=9 \times 8=72$.

Length of one side of the hexagon $=72 \div 6=12$.
The length of one side of the hexagon is $\mathbf{1 2} \mathbf{~ c m}$.
3. The perimeter of shape $A=9+9+5+5=\mathbf{2 8} \mathbf{c m}$.
4. The greatest possible area is a square
$12 \mathrm{~m} \times 12 \mathrm{~m}=144 \mathrm{~m}^{2}$.

## IO Volume - count cubes

## $\rightarrow$ pages 208-211

## Discover

1. a) Jamilla and Max's solids each have a volume of $8 \mathrm{~cm}^{3}$.
Jamilla is not correct.
b) The volume of the new cuboid is $\mathbf{1 6} \mathbf{c m}^{\mathbf{3}}$. Children could make the following cuboids:
$2 \times 2 \times 4,1 \times 2 \times 8$ or $1 \times 1 \times 16$.

## Think together

1. a) $\mathbf{8} \mathrm{cm}^{3}$
b) $\mathbf{1 1} \mathrm{cm}^{3}$
c) $\mathbf{2 8} \mathrm{cm}^{3}$
2. a) $20 \mathrm{~cm}^{3}$
b) $36 \mathrm{~cm}^{3}$
3. a) $\operatorname{Max}: 2 \times(3 \times 4)=24 \mathrm{~cm}^{3}$

Jamilla: $4 \times\left(3 \times 2=24 \mathrm{~cm}^{3}\right.$
b) A: $18 \mathrm{~cm}^{3} \quad$ B: $24 \mathrm{~cm}^{3} \quad \mathrm{C}: 22 \mathrm{~cm}^{3}$
$B$ has the greatest volume.
The total number of cubes is 64 . This would make a $4 \times 4 \times 4$ cube.

## II Volume of a cuboid

## $\rightarrow$ pages 212-215

## Discover

1. a) 64 cubes fit in Aki's box.

60 cubes fit in Kate's box.
b) Volume $=1 \times w \times h$
$4 \times 4 \times 4=16 \times 4=64$
The volume of Aki's box is $64 \mathrm{~cm}^{3}$.
$5 \times 4 \times 3=20 \times 3=60$
The volume of Kate's box is $60 \mathrm{~cm}^{3}$.

## Think together

1. a) $4 \times 3 \times 3=36 \mathrm{~cm}^{3}$
b) $5 \times 5 \times 2=50 \mathrm{~cm}^{3}$
c) $10 \times 3 \times 4=120 \mathrm{~cm}^{3}$
2. The volume of $A$ is $4 \times 5 \times 6=120 \mathrm{~cm}^{3}$.

The volume of $B$ is $10 \times 2 \times 6=120 \mathrm{~cm}^{3}$.
The volume of $C$ is $4 \times 1.5 \times 20=120 \mathrm{~cm}^{3}$.
Olivia is correct, they all have the same volume.
3. a) height $=\mathbf{2} \mathrm{cm}$
b) length $=\mathbf{1 0} \mathrm{cm}$

## End of unit check

$\rightarrow$ pages 216-217

1. C
2. D
3. B
4. B
5. a) Area $=\mathbf{4 8 0} \mathbf{m}^{\mathbf{2}}$
b) Turf $=\mathbf{4 8 0} \times £ 2=\boldsymbol{£ 9 6 0}$
