
 

Solution design (levels-based mark scheme) 

 

0 1 2 3 Max. 
N

o
 r

e
w

a
rd

a
b
le

 m
a
te

ri
a
l 

• There has been little attempt to 

decompose the problem.  

• Some of the component parts of 

the problem can be seen in the 

solution, although this will not be 

complete. 

• Some parts of the logic are clear 

and appropriate to the problem. 

• The use of variables and data 

structures, appropriate to the 

problem, is limited. 

• The choice of programming 

constructs, appropriate to the 

problem, is limited.   

 

• There has been some attempt to 

decompose the problem. 

• Most of the component parts of the 

problem can be seen in the 

solution. 

• Most parts of the logic are clear 

and appropriate to the problem. 

• The use of variables and data 

structures is mostly appropriate. 

• The choice of programming 

constructs is mostly appropriate to 

the problem. 

  

• The problem has been decomposed 

clearly into component parts. 

• The component parts of the 

problem can be seen clearly in the 

solution. 

• The logic is clear and appropriate 

to the problem. 

• The choice of variables and data 

structures is appropriate to the 

problem. 

• The choice of programming 

constructs is accurate and 

appropriate to the problem. 

  

3 



 

Functionality (levels-based mark scheme) 

  

0 1 2 3 Max. 
N

o
 r

e
w

a
rd

a
b
le

 m
a
te

ri
a
l 

Functionality (when the code  

is run) 

• The component parts of the 

program are incorrect or 

incomplete, providing a program of 

limited functionality that meets 

some of the given requirements. 

• Program outputs are of limited 

accuracy and/or provide limited 

information. 

• Program responds predictably to 

some of the anticipated input. 

• Solution is not robust and may 

crash on anticipated or provided 

input. 

 

Functionality (when the code  

is run) 

• The component parts of the 

program are complete, providing a 

functional program that meets 

most of the stated requirements. 

• Program outputs are mostly 

accurate and informative. 

• Program responds predictably to 

most of the anticipated input. 

• Solution may not be robust within 

the constraints of the problem. 

 

Functionality (when the code  

is run) 

• The component parts of the 

program are complete, providing a 

functional program that fully meets 

the given requirements. 

• Program outputs are accurate, 

informative, and suitable for the 

user. 

• Program responds predictably to 

anticipated input. 

• Solution is robust within the 

constraints of the problem. 

 

3 



 

Functionality (levels-based mark scheme) 

 

0 1 2 3 Max. 
N

o
 r

e
w

a
rd

a
b
le

 m
a
te

ri
a
l 

Functionality (when the code  

is run) 

• The component parts of the 

program are incorrect or 

incomplete, providing a program of 

limited functionality that meets 

some of the given requirements. 

• Program outputs are of limited 

accuracy and/or provide limited 

information. 

• Program responds predictably to 

some of the anticipated input. 

• Solution is not robust and may 

crash on anticipated or provided 

input. 

 

Functionality (when the code  

is run) 

• The component parts of the 

program are complete, providing a 

functional program that meets 

most of the stated requirements. 

• Program outputs are mostly 

accurate and informative. 

• Program responds predictably to 

most of the anticipated input. 

• Solution may not be robust within 

the constraints of the problem. 

 

Functionality (when the code  

is run) 

• The component parts of the 

program are complete, providing a 

functional program that fully meets 

the given requirements. 

• Program outputs are accurate, 

informative, and suitable for the 

user. 

• Program responds predictably to 

anticipated input. 

• Solution is robust within the 

constraints of the problem. 

 

3 



 

Solution design (levels-based mark scheme) 

 

0 1 2 3 Max. 
N

o
 r

e
w

a
rd

a
b
le

 m
a
te

ri
a
l 

• There has been little attempt to 

decompose the problem.  

• Some of the component parts of 

the problem can be seen in the 

solution, although this will not be 

complete. 

• Some parts of the logic are clear 

and appropriate to the problem. 

• The use of variables and data 

structures, appropriate to the 

problem, is limited. 

• The choice of programming 

constructs, appropriate to the 

problem, is limited.   

 

• There has been some attempt to 

decompose the problem. 

• Most of the component parts of the 

problem can be seen in the 

solution. 

• Most parts of the logic are clear 

and appropriate to the problem. 

• The use of variables and data 

structures is mostly appropriate. 

• The choice of programming 

constructs is mostly appropriate to 

the problem. 

  

• The problem has been decomposed 

clearly into component parts. 

• The component parts of the 

problem can be seen clearly in the 

solution. 

• The logic is clear and appropriate 

to the problem. 

• The choice of variables and data 

structures is appropriate to the 

problem. 

• The choice of programming 

constructs is accurate and 

appropriate to the problem. 

  

3 



 

Good programming practices (levels-based mark scheme) 

  

0 1 2 3 Max. 
N

o
 r

e
w

a
rd

a
b
le

 m
a
te

ri
a
l 

• There has been little attempt to lay 

out the code into identifiable 

sections to aid readability. 

• Some use of meaningful variable 

names. 

• Limited or excessive commenting. 

• Parts of the code are clear, with 

limited use of appropriate spacing 

and indentation. 

• There has been some attempt to 

lay out the code to aid readability, 

although sections may still be 

mixed. 

• Uses mostly meaningful variable 

names. 

• Some use of appropriate 

commenting, although may be 

excessive. 

• Code is mostly clear, with some use 

of appropriate white space to aid 

readability. 

 

• Layout of code is effective in 

separating sections, e.g. putting all 

variables together, putting all 

subprograms together as 

appropriate. 

• Meaningful variable names and 

subprogram interfaces are used 

where appropriate. 

• Effective commenting is used to 

explain logic of code blocks. 

• Code is clear, with good use of 

white space to aid readability. 

 

3 



 

Functionality (levels-based mark scheme) 

  

0 1 2 3 Max. 
N

o
 r

e
w

a
rd

a
b
le

 m
a
te

ri
a
l 

Functionality (when the code  

is run) 

• The component parts of the 

program are incorrect or 

incomplete, providing a program of 

limited functionality that meets 

some of the given requirements. 

• Program outputs are of limited 

accuracy and/or provide limited 

information. 

• Program responds predictably to 

some of the anticipated input. 

• Solution is not robust and may 

crash on anticipated or provided 

input. 

 

Functionality (when the code  

is run) 

• The component parts of the 

program are complete, providing a 

functional program that meets 

most of the stated requirements. 

• Program outputs are mostly 

accurate and informative. 

• Program responds predictably to 

most of the anticipated input. 

• Solution may not be robust within 

the constraints of the problem. 

 

Functionality (when the code  

is run) 

• The component parts of the 

program are complete, providing a 

functional program that fully meets 

the given requirements. 

• Program outputs are accurate, 

informative, and suitable for the 

user. 

• Program responds predictably to 

anticipated input. 

• Solution is robust within the 

constraints of the problem. 

 

3 


	67286 QP GCSE Computer Science 1PC2 02 260220
	5. SAMs GCSE L1-L2 Computer Science 2020 P2 MS



