
Algorithms and programs

1

Topic 1

Computational thinking
1.1 Good programming practice: tools and

strategies
1.2 Algorithms and programs
1.3 Data types
1.4 Selection and relational operators
1.5 Repetition
1.6 One-dimensional data structures
1.7 Subprograms
1.8 Working with algorithms
1.9 Two-dimensional data structures
1.10 Validation and strings
1.11 Working with files
1.12 Sorting and searching

In this topic, you will be introduced to some of the key
concepts of Computer Science that will help you to
think like a programmer and solve problems using code.
You’ll learn to write, analyse and modify code, while
developing your computational thinking skills.

You will understand how to use your Integrated
Development Environment (IDE) to develop code, as
well as how to write and express algorithms in the
Python Programming Language Subset (PLS) and in
visual forms (flowcharts).

You’ll also learn about different aspects of algorithms
and programs, such as subprograms, lists, variables and
different data types. Through worked examples and
practical programming activities, you will have plenty of
practice applying the knowledge and skills you learn in
this topic to solve real world problems, in order to help
you succeed in the Paper 2 exam.

Topic 1

D R
A F

T
P

R O
O F

S

Computational thinking

22

Understanding algorithms and programs
An example of an algorithm
An interactive map is a useful way to find a route between two locations.
This image shows a route between two cities that was calculated by a
mapping program.

By the end of this section you should be able to:

• describe what an algorithm is
• explain what algorithms are used for
• describe what a program is
• explain what programs are used for
• express algorithms as flowcharts and written descriptions
• translate algorithms to program code
• use variables in program code
• use and describe the purpose of arithmetic operators
• use order of precedence with arithmetic operators.

Learning outcomes

Figure 1.2.1 Written instructions to the
driver are given at the left of the map

The written instructions for the driver:

• are unambiguous in telling the driver exactly what to do, like ‘turn left’,
‘turn right’ or ‘continue straight’.

• are a sequence of steps.

• can be used again and will always provide the same result.

• provide a solution to a problem, in this case how to get from Chelmsford
to Oxford.

Sequence: an ordered set of
instructions.

Key term

1.2 Algorithms and programs

D R
A F

T
P

R O
O F

S

Algorithms and programs

23

A solution to a problem with these characteristics is called an algorithm.
Most problems have more than one solution so different algorithms can be
created for the same problem.

Successful algorithms
There are three criteria for deciding whether an algorithm is successful.

• Accuracy – it must lead to the expected outcome (e.g. create a route from
Chelmsford to Oxford).

• Consistency – it must produce the same result, for the same input, each
time it is run.

• Efficiency – it must solve the problem in the shortest possible time using
as few computer resources as possible. In this example, the mapping
software is replacing a manual method, and if it were no faster than
looking in an atlas, it would not be an improvement on the older method.
Later in the topic there is a section on algorithms used to sort and search
data. Some of these algorithms are more efficient than others and will
sort the data far more quickly.

The relationship between algorithms and programs
Algorithms and programs are closely related, but they are not the
same. An algorithm is a detailed design for a solution; a program is the
implementation of that design. A program is an algorithm that has been
converted into program code so that it can be executed by a computer.
A well-written algorithm should be free of logical errors and easy to code
in any high-level language.

As part of this course, you will learn to write programs in Python. All
high-level programming languages resemble natural human languages,
which makes them easier for humans to read and write but impossible for
computers to understand without the help of a translator. You will learn
more about how a program written in a high-level language is translated
into machine code – the language of computers – in Topic 3.

Algorithm: a precise method
for solving a problem. It consists
of a sequence of step-by-step
instructions that solve a specific
problem.

Key term

▶ A computer programmer at work
writing code

Program: an algorithm that has
been converted into program
code so that it can be executed
by a computer.

Execution: the process by which
a computer carries out the
instructions of a program.

Key terms

D R
A F

T
P

R O
O F

S

Computational thinking

24

Displaying an algorithm
We carry out many everyday tasks using algorithms because we are
following a set of instructions to achieve an expected result, for example
making a cup of coffee. If we have performed the task many times before,
we usually carry out the instructions without thinking, but if we are doing
something unfamiliar, such as putting together a flat-pack chest of drawers,
then we follow the instructions very carefully.

An algorithm can be expressed in different ways.

Written descriptions
A written description is the simplest way of expressing an algorithm. Here is
an algorithm describing the everyday task of making a cup of instant coffee.

Algorithm for making a cup
of instant coffee

Fill kettle with water.

Turn on kettle.

Place coffee in cup.

Wait for water to boil.

Pour water into cup.

Add milk and sugar.

Stir.

Worked example

Produce a written description of an algorithm for getting to school.
It should start with leaving home and end with arriving at school..

 Practical activity

Flowcharts
Flowcharts can be used to represent an algorithm graphically. They provide
a more visual display.

There are formal symbols that must be used in a flowchart – you can’t
just make up your own because nobody else would be able to follow your
algorithm.

Here are the symbols that should be used. There should only be a single
start and a single stop symbol. The other symbols can be used as many
times as required to solve the problem.

Flowchart: a graphical
representation of an algorithm.
Each step in the algorithm
is represented by a symbol.
Symbols are linked together with
arrows showing the order
in which steps are executed.

Key terms

Denotes the start and
end of an algorithm

Denotes a process
to be carried out

Denotes an input
or output

Denotes a decision
to be made

Shows the logical
flow of the algorithm

Denotes a pre-defined
subprogram

Figure 1.2.2 Flowchart symbols

D R
 A

 F
 T

P R

 O
 O

 F
 S

Algorithms and programs

25

.This flowchart is an alternative way of depicting the algorithm that was
expressed above as a written description.

Figure 1.2.3 Flowchart of an algorithm to make a cup of coffee

fill kettle with water

start

end

turn on kettle

place co�ee in cup

wait for kettle to boil

pour water into cup

add milk and sugar

stir

This is a process (an action that
has to be performed

This instruction is unambiguous –
the water must be boiling

Stating ‘wait for the water to heat’
would be ambiguous. How hot?

Display the ‘journey to school’ algorithm that you created in the previous
activity as a flowchart.

Practical Activity 2

The algorithms you have looked at so far are designed for humans to follow.
Algorithms also form the basis of computer programs. A computer is a
senseless machine that simply does exactly what it is told and follows a set
of instructions, but computers can carry out these instructions far more
quickly than humans. That is why they are so useful.
D R

A F
T

P
R O

O F
S

Computational thinking

26

Algorithms for playing chess are used widely. After four moves by each opponent, there are
over 288 billion possible further moves – far too many for a human to consider, but within
the range of computers. This is what makes it possible for a top-level computer program to
defeat a chess grandmaster.

 Computer Science in action: Chess algorithms

Program code
In addition to flowcharts and written descriptions, algorithms can also be
expressed in program code. Both flowcharts and written descriptions can
be translated into programming languages.

There are steps to follow that will help produce programs that execute on
a computer. Depending on the complexity of the original problem, some of
these may be omitted, but for most problems, these steps show a sensible
approach.

Analyse – understand the problem that needs to be solved and how to
determine success.

Design – develop a solution to the problem and express the solution in a
written description and/or a flowchart.

Implement – translate the description of the algorithm to a programming
language.

Debug and test – using tools, execute, find errors, fix errors and test
different inputs.

Evaluate – make judgements about the solution based on the original
requirements of the problem and consider changes related to efficiency.

Example of a simple algorithm
Here is an example of a simple algorithm. It sets two numbers, calculates
the total by adding them together, and then displays the total on the screen.
This algorithm does not need the user to type in any numbers.
Three different versions of this algorithm are shown: a written description;
a flowchart; and program code.

Written description

Program code: the
implementation of an algorithm,
in a human-readable form, that
can be translated to a form that
can be executed on a computer.

Key terms

Below is an algorithm for adding two numbers.

Set the first number to 11.

Set the second number to 22.

Calculate total by adding first and second numbers.

Output total.

Worked example

D R
 A

 F
 T

P R

 O
 O

 F
 S

Algorithms and programs

27

Program code

Algorithm for adding two numbers

 1 # ---
 2 # Global variables
 3 # ---
 4 numFirst = 11
 5 numSecond = 22
 6 total = 0
 7 # ---
 8 # Main program
 9 # ---
 10 total = numFirst + numSecond
 11 print (total)

In this program code, the + symbol is an arithmetic operator that
denotes addition. The = symbol is an assignment operator. The identifier
on the left is the name of a variable. The result of the expression on the
right of the = operator is placed into the variable on the left.

Worked example

Algorithm for adding two numbers

Worked example

start

end

first number = 11

second number = 12

total = first number
+ second number

output total

Figure 1.2.4 Flowchart showing
the adding of two numbers

Flowchart

Arithmetic operator: used to
perform a calculation on two
numbers.

Assignment: the act of storing
a value in a variable. Uses the
 ‘=’ symbol. The value on the
right is stored in the variable on
the left.

Identifier: a unique name given
to a variable or a constant. Using
descriptive names for variables
and constants makes code much
easier to read.

Variables: name associated with
containers which programmers
use to hold data. The contents
can be changed during
execution.

Key terms

D R
A F

T
P

R O
O F

S

Computational thinking

28

Arithmetic operators

Operator Function Example Result if known

+ Addition: add the values together 8 + 5

myScore1 + myScore2

13

– Subtraction: subtract the second
value from the first

17	–	4

myScore1 - myScore2

13

* Multiplication: multiply the values
together

6 * 9

numberBought * price

54

/ Division: divide the first value by
the second value and return the
result including decimal places

13 / 4

totalMarks / numberTests

3.25

// Integer division: divide the
first value by the second
value and return only the whole
number (integer) part of the
result

13 // 4

totalMarks // numberTests

3

% Modulus: divide the first value
by the second value and return the
remainder

13 % 4

score % buckets

1

** Exponentiation: raise the first value
to the power of the second value

3**4

num1 ** num2

Worked example

Integer: whole numbers, both
positive, negative and 0 without
a fractional part, e.g. −12, 0,
1002.

Precedence: the default order
in which operations are carried
out. For logical operators, the
order is (), not, and, or.

Key terms

In computer programming the order of precedence (the order in which
you do each calculation) is the same as in mathematics and science –
BIDMAS.

This is how 32 × 9 + (5 − 2) would be evaluated.

 Brackets 32 × 9 + (3)

 Indices 9 × 9 + (3)

 Division

 Multiplication 81 + (3)

 Addition 84

 Subtraction

To calculate 24 ÷ 3 – 2, the division would be calculated before the
subtraction.

 24 ÷ 3 = 8
 8 – 2 = 6

Worked example

D R
 A

 F
 T

P R

 O
 O

 F
 S

Algorithms and programs

29

Formally known as medial capitals, camel case is used in many
programming languages to enable easy reading of compound names
(two or more words combined). Names of functions and variables
cannot contain spaces in most programming languages, so camel
case is used when a name needs to contain more than one word. Its
earliest technical use is in the labelling of chemical compounds, for
example NaCl.

Computer science in action: Camel case

Here is a written description of an algorithm.

Set base of triangle to 22

Set height of triangle to 44

Set area of triangle to (1/2) * base * height

Output area to display

Express this algorithm in a flowchart.

Practical Activity

Ever wondered why Google results appear in the order they do?

There’s an algorithm for that.

Google uses a selection of algorithms to select the order in which
search results are displayed. The original, and best known, is PageRank
– named after Google co-founder Larry Page. It works by counting
the number and quality of links to a page. The idea is that the most
important webpages will have the largest number of other pages that
link to it. The algorithm is run a number of times for each search (known
as ‘iterations’ or ‘passes’) to give the best possible answer.

Computer Science in action: Page rank algorithm

Naming conventions for variables
It is good practice in programming to adopt a consistent way of writing
identifiers, including variable names, throughout programs.

A common convention is to use camel case for compound words (e.g.
firstName, creditCard) with no space between words and the second word
starting with a capital letter.

D R
A F

T
P

R O
O F

S

Computational thinking

30

This activity uses the code shown here. Use it for each of the steps shown.

Predict:

What do you think the code will do? What output do you think it will
produce?

Run:

Load the code into your coding environment and run it.

Did it do what you thought it would do? Did the output match your
prediction? If not, how did it differ?

Investigate:

Remove the line ‘b = 22’. Run the code. Carefully read the error message.
What is the message trying to tell you? Put the line back in.

Change the calculation to move the ‘(1/2)’ between the ‘b’ and ‘h’.
Run the code. What does that tell you about the use of brackets?
What does that tell you about the order of arithmetic operators?

Modify:

Be sure to run the code after each change to check it still works.

Change the identifier names (variables) to be more meaningful.
Remember to use camel case, if required.

Using the existing output line, add lines to display the values of each
variable before the total area.

Make:

A program is needed to calculate the price of an item after adding tax.
The program must store the base price of an item, the tax rate
(expressed as a decimal), and the final price. The program must output
the base price, the tax rate, and the final price. The formula to calculate
the final price is base price x (1 + tax rate).

PRIMM Activity

 1 # ---

 2 # Global variables

 3 # ---

 4 b = 22

 5 h = 44

 6 a = 0

 7

 8 # ---

 9 # Main program

 10 # ---

 11 a = (1/2) * b * h

 12 print ("Area is", a)

D R
 A

 F
 T

P R

 O
 O

 F
 S

Algorithms and programs

31

1 Here is the image of a line from a program. Amend the image with
circles to show the order in which the values are evaluated, using the
order of precedence rules. (3 marks)

answer = 5 + 2 * 3 / 4	–	1

2 Compare the modulus (%) operator and the integer division (//)
operator. (3 marks)

3 The formula for calculating the surface area of an octahedron is shown
below. Construct an expression, using the arithmetic operator symbols,
to translate this formula into Python. (5 marks)

Exam-style question

s = 2a2 √3
_

a

• An algorithm is a precise method for solving a problem.
• Algorithms can be displayed as written descriptions and flowcharts.
• Algorithms can be translated into program code.
• Arithmetic operators are used in calculations and have a precedence

order.
• Variables are ‘containers’ for storing information. The value stored in a

variable can change as the program executes.
• Selecting descriptive names for identifiers makes code easier to read

Summary

 If the base price is 12.30 and the tax rate is 0.20, then the final price is
14.76.

Create a new program file named 'Net_Price.py'. Lay out the sections of
code as shown in the examples. Write and test your program

D R
A F

T
P

R O
O F

S

