

Edexcel AS and A level Further Mathematics

Further Pure Mathematics 2

FP2

	Contents			= A lev	el only
Overarching themes		iv	4	Recurrence relations	120
Extra online content		vi	4.1	Forming recurrence relations	121
1	Number theory	1	4.2	Solving first-order recurrence relations	125
1.1	0	2	4.3	Solving second-order recurrence	
1.2	0	5		relations	134
1.3		10	4.4	Proving closed forms	142
1.4	4 Divisibility tests	16		Mixed exercise 4	145
0 1.5	Solving congruence equations	20			
1.6	Fermat's little theorem	26	5	Matrix algebra	152
1.7	7 Combinatorics	28	5.1	Eigenvalues and eigenvectors	153
	Mixed exercise 1	38	5.2	Reducing matrices to diagonal form	166
_			5.3	The Cayley–Hamilton theorem	179
2	Groups	44		Mixed exercise 5	183
2.1		45		Interpolition to also invest	100
2.2	, ,	51	• 6	Integration techniques	188
2.3	0 1	64	6.1	Reduction formulae	189
0 2.4	32 - 32 - 33 - 34 - 34 - 34 - 34 - 34 -	72	6.2	Arc length	197
	Mixed exercise 2	80	6.3	Area of a surface of revolution	206
3	Complex numbers	86		Mixed exercise 6	213
	Complex numbers	87	Review exercise 2		217
3.1	0 0		ile vii	ew exercise 2	211
3.2		96	Exam-style practice: AS		225
0 3.3		100			-
	Mixed exercise 3	109	Exan	n-style practice: A level	227
Review exercise 1		113	Answers		230
			Inde	x	264

Overarching themes

The following three overarching themes have been fully integrated throughout the Pearson Edexcel AS and A level Mathematics series, so they can be applied alongside your learning and practice.

1. Mathematical argument, language and proof

- · Rigorous and consistent approach throughout
- Notation boxes explain key mathematical language and symbols
- Dedicated sections on mathematical proof explain key principles and strategies
- Opportunities to critique arguments and justify methods

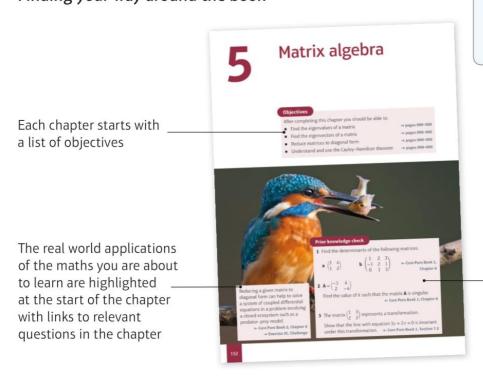
2. Mathematical problem solving

- Hundreds of problem-solving questions, fully integrated into the main exercises
- Problem-solving boxes provide tips and strategies
- Structured and unstructured questions to build confidence
- Challenge boxes provide extra stretch

3. Mathematical modelling

- Dedicated modelling sections in relevant topics provide plenty of practice where you need it
- Examples and exercises include qualitative questions that allow you to interpret answers in the context of the model
- Dedicated chapter in Statistics & Mechanics Year 1/AS explains the principles of modelling in mechanics

Finding your way around the book



Access an online digital edition using the code at the front of the book.

collect information

The *Prior knowledge check* helps make sure you are ready to start the chapter

The Mathematical Problem-solving cycle

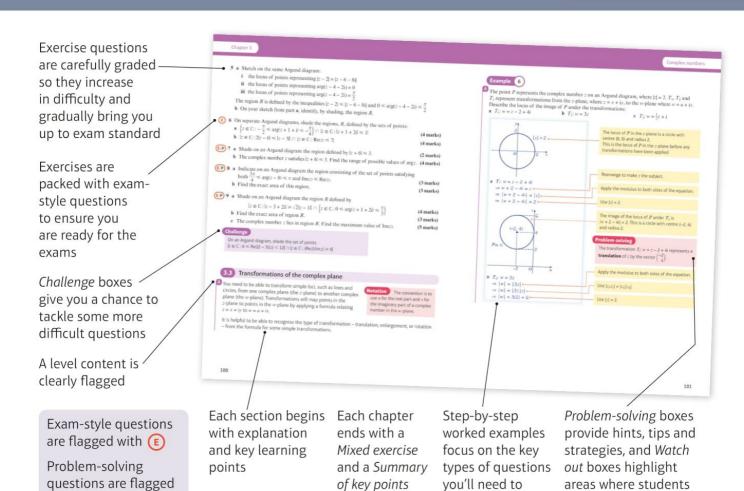
process and

interpret results

specify the problem [

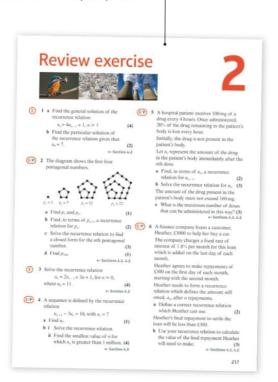
often lose marks in

their exams



Every few chapters a *Review exercise* helps you consolidate your learning with lots of exam-style questions

with (P)



Exam-style practice

Further Mathematics
AS Level
Further Pure 2

Time: 50 minutes

You must have: Mathematical Formulae and Statistical Tables, Calculator

1 a Using a suitable algorithm, and without performing any division explain why 1485 is divisible by 11.

b Use the Euclidean algorithm to find integers p and q such that |48|s + |43|q + 1| (4)

c Hence find integers q and θ such that |48|s + |48|q + 1| (5)

The set G = (11, 3, 7, 9, 11, 13, 17, 19) forms a group under the operation of multiplication modulo 20.

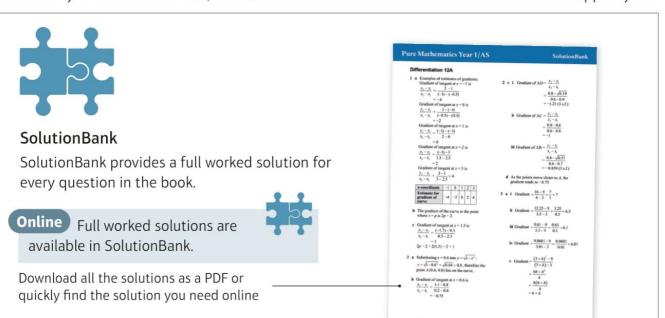
a Complete the Copley table below for this group. $|x_{sol}| = 13 | |x_{sol}| |$

AS and A level practice papers at the back of the book help you prepare for the real thing.

tackle

Extra online content

Whenever you see an Online box, it means that there is extra online content available to support you.



Use of technology

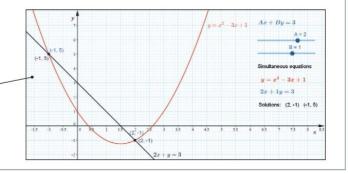
Explore topics in more detail, visualise problems and consolidate your understanding using pre-made GeoGebra activities.

Online Find the point of intersection graphically using technology.

Ge&Gebra

GeoGebra-powered interactives

Interact with the maths you are learning using GeoGebra's easy-to-use tools



Access all the extra online content for free at:

www.pearsonschools.co.uk/fp2maths

You can also access the extra online content by scanning this QR code:

Number theory

Objectives

After completing this chapter you should be able to:

- Use the division algorithm and the Euclidean algorithm
- Use the Euclidean algorithm to illustrate Bezout's identity
- Understand and use modular arithmetic and congruences
- Apply tests for divisibility by 2, 3, 4, 5, 6, 9, 10 and 11
- Solve simple congruence equations
- Use Fermat's little theorem to find least positive residues
- Solve counting problems

- → pages 2-7
- → pages 8-10
- → pages 10-15
- → pages 16-20
- → pages 20-25
- → pages 26-27
- → pages 28-37

Prior knowledge check

1 Prove, by contradiction, that there are infinitely many prime numbers.

← Pure Year 2, Chapter 1

- Prove, by induction, that for all $n \in \mathbb{Z}$, $n \ge 7$, $3^n < n! \leftarrow \text{Core Pure Book 1, Section 8.1}$
- **a** Write 108 and 180 as products of their prime factors.
 - b Hence find the greatest common divisor and least common multiple of 108 and 180.
- 4 Prove, by induction, that for all $n \in \mathbb{Z}^+$, $n^3 + 2n$ is divisible by 3.

← Core Pure Book 1, Section 8.2

A suitcase combination lock consists of three digits. Each digit is chosen from the set {0, 1, 2, 3, 4, 5, 6}. Find the number of different possible codes. ← GCSE Mathematics

1.1 The division algorithm

Number theory is the study of systems and properties of numbers. Of particular interest are the system of integers, $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$, and the system of natural numbers, $\mathbb{N} = \{1, 2, 3, ...\}$. The concept of **divisibility** is very important in number theory.

If a and b are integers with a ≠ 0, then b is divisible by a if there exists an integer k such that b = ka. In this case, we say that a divides b and denote this by a | b. If a does not divide b, then we write a ∤ b.

Notation a is called a **divisor** or **factor** of b.

In the past, you may have only considered the positive divisors of a number, but the definition above applies to both positive and negative integers.

Example 1

Given that $a \mid b$, show that $-a \mid b$.

b=ka for some integer k If k is an integer, then -k is also an integer, and b=(-k)(-a) so $-a\mid b$ as required.

This is the definition of divisibility.

Example 2

For each pair of integers below, determine whether the first integer divides the second.

- a 11, 143
- **b** -4, 28
- c 15, 47
- **d** 3, 2

- a 143 = 13 × 11 ⇒ 11 | 143
- **b** 28 = (-7)(-4) ⇒ -4 | 28
- **c** $3 \times 15 = 45$ and $4 \times 15 = 60$ so $15 \nmid 47$
- **d** $0 \times 3 = 0$ and $1 \times 3 = 3$ so $3 \nmid 2$ —

If |a| > |b| > 0, then $a \nmid b$.

Example 3

Find all the divisors of:

a 8

- **b** 11
- a ± 1 , ± 2 , ± 4 , ± 8
- b ±1 and ±11 ←

11 is a prime number so its divisors are only ± 1 and ± 11 .

You need to be able to apply the following properties of divisibility:

- For any a, b, $c \in \mathbb{Z}$, with $a \neq 0$:
 - a | a (every integer divides itself)
 - a | 0 (0 is divisible by any integer)
 - $a \mid b$ and $b \mid c \Rightarrow a \mid c$
 - $a \mid b$ and $a \mid c \Rightarrow a \mid bn + cm$ for all $m, n \in \mathbb{Z}$
 - $a \mid b \Leftrightarrow an \mid bn$ for all $n \in \mathbb{Z}$, $n \neq 0$
 - If a and b are positive integers and $a \mid b$ then $a \leq b$

Notation \Leftrightarrow means 'if and only if'. It means that the implication works in both directions, so $a \mid b \Rightarrow an \mid bn$ and $an \mid bn \Rightarrow a \mid b$.

Example

Given $a, b, c \in \mathbb{Z}$, prove that if $a \mid b$ and $a \mid c$, then $a \mid bn + cm$ for all $m, n \in \mathbb{Z}$.

 $b = ja \text{ for some } j \in \mathbb{Z}$ $c = ka \text{ for some } k \in \mathbb{Z}$ bn + cm = (ja)n + (ka)m = (jn + km)aSince $j, k, n, m \in \mathbb{Z}, jn + km \in \mathbb{Z}, \text{ so } a|bn + cm,$ as required.

Write down the facts you know from the definition of divisibility. Use these facts to show that bn + cm can be written as an integer multiple of a.

Notation The expression bn + cm, where $n, m \in \mathbb{Z}$, is called a **linear combination** of b and c.

When you multiply, add or subtract two integers, the result is always an integer. However, the quotient of two integers is not necessarily an integer.

Notation You can say that \mathbb{Z} is **closed** under the operations of addition, subtraction and multiplication, but not closed under the operation of division.

Because of this, it is helpful to define division within the integers more rigorously.

The **division algorithm** allows you to find a unique **quotient** and **remainder** for any two integers:

If a and b are integers such that b > 0, then there exist unique integers q and r such that a = bq + r, with $0 \le r < b$.

- **1** Begin with values of a and b.
- **2** Set q equal to the greatest integer that is less than or equal to $\frac{a}{b}$
- **3** Set r = a bq.

The quotient and r the remainder. You also call a the dividend and b the divisor.

Note that a is divisible by b if and only if the remainder, r, in the division algorithm is zero.

Example 5

Use the division algorithm to find integers q and r such that:

a
$$94 = 13q + r$$

b
$$-232 = 11q + r$$

a
$$\frac{94}{13} = 7.23...$$
 so $q = 7$
 $r = a - bq = 94 - 13 \times 7 = 3$
So $94 = 13 \times 7 + 3$
b $\frac{-232}{11} = -21.09...$ so $q = -22$
 $r = a - bq = -232 - 11 \times (-22) = 10$
So $-232 = 11 \times (-22) + 10$

$$a = 94$$
 and $b = 13$

Watch out There are other integers that satisfy a = bq + r, such as $94 = 13 \times 5 + 29$, but there is only one pair of values that satisfies this relationship **and** where $0 \le r < b$.

q must be less than or equal to $\frac{a}{b}$. The greatest integer less than or equal to -21.09... is -22.

Example 6

Use the division algorithm to prove that, for all integers n, n^2 leaves a remainder of 0 or 1 when divided by 4.

n = 4q + r, where $q \in \mathbb{Z}$ and $r \in \{0, 1, 2, 3\}$ Consider $n^2 = (4q + r)^2 = 16q^2 + 8qr + r^2$ $r = 0 \Rightarrow n^2 = 16q^2 = 4(4q^2)$, so remainder is 0 when divided by 4. $r = 1 \Rightarrow n^2 = 16q^2 + 8q + 1 = 4(4q^2 + 2q) + 1$, so remainder is 1 when divided by 4. $r = 2 \Rightarrow n^2 = 16q^2 + 16q + 4 = 4(4q^2 + 4q + 1)$, so remainder is 0 when divided by 4. $r = 3 \Rightarrow n^2 = 16q^2 + 24q + 9 = 4(4q^2 + 6q + 2) + 1$, so remainder is 1 when divided by 4.

Therefore, in all cases, the remainder when n^2 is

Problem-solving

From the division algorithm, you know that n can be written in the form 4q + r where r = 0, 1, 2 or 3. Consider each possible value of r separately. This is an example of a **proof by exhaustion**.

← Pure Year 1, Section 7.5

Because of the division algorithm, you know that you have covered all possible cases for n.

Exercise 1A

- 1 For each pair of integers below, determine whether the first divides the second.
 - a 7, 21
- **b** 8, 2

- c -25, 25
- **d** 12, 140
- **2** Given that $n \in \mathbb{Z}$ and $n \mid 15$, write down all the possible values of n.
- 3 Find all the divisors of:

divided by 4 is 0 or 1. .

a 12

b 20

c - 6

- **d** 1
- P 4 Prove, for positive integers a and b, that $a \mid b \Rightarrow an \mid bn$ for all $n \in \mathbb{Z}$, $n \neq 0$.
- P 5 Prove that if $a \mid b$ and $b \mid c$ then $a \mid c$.

- 6 For each of the following integer pairs (a, b) find integers q and r such that a = qb + r, where $0 \le r < b$:
 - **a** (121, 9)
- **b** (-148, 12)
- c (51, 9)
- \mathbf{d} (-51, 9)

- e (544, 84)
- f (-544, 84)
- g (44, 84)
- **h** (5723, 100)

- 7 Find the quotient and remainder when:
 - a 200 is divided by 7

b -52 is divided by 3

c 22 000 is divided by 13

- d 752 is divided by 57
- **8** Prove that the cube of any integer has one of the following forms, for some $k \in \mathbb{Z}$.

$$9k, 9k + 1, 9k + 8$$

Problem-solving

By the division algorithm, any integer can be written in the form 3q, 3q + 1 or 3q + 2 for some $q \in \mathbb{Z}$.

- P Show that the square of any odd integer is of the form 8k + 1 for some integer k.
- P 10 Use the division algorithm to prove that the fourth power of any integer is of either of the forms 5k or 5k + 1 for some $k \in \mathbb{Z}$.
- P 11 Show that, for all integers $a \ge 1$, $\frac{a(a^2 + 2)}{3}$ is an integer.

Challenge

- **a** Prove that there exist unique integers p and s such that a = bp + s with $-\frac{|b|}{2} < s \le \frac{|b|}{2}$
- **b** Find p and s given that a = 49 and b = 26.

1.2 The Euclidean algorithm

You can use the definition of divisibility to write formal definitions of common divisors and greatest common divisors.

■ If a, b, and c are integers and $c \neq 0$, then c is called a **common divisor** of a and b if $c \mid a$ and $c \mid b$.

If a and b are integers with at least one of them not equal to zero, then you define the **greatest common divisor** of a and b as the largest positive integer which divides a and b.

- The greatest common divisor of two integers *a* and *b* is a positive integer *d* that satisfies the two conditions:
 - $d \mid a$ and $d \mid b$
 - If c is a common divisor of a and b, then $c \le d$

Notation The greatest common divisor of a and b is written as gcd(a, b). It is also sometimes called the **highest** common factor of a and b.

Example

Find:

 $a \gcd(3, 12)$

b gcd(25, 25)

c gcd(90, 84)

If $a \mid b$, then gcd(a, b) = a.

 $a \gcd(3, 12) = 3$ **b** gcd(25, 25) = 25

 $c 90 = 2 \times 3^2 \times 5$ $84 = 2^2 \times 3 \times 7$ So $gcd(90, 84) = 2 \times 3 = 6$

gcd(a, a) = a

In GCSE mathematics, you found greatest common divisors by writing numbers as products of their prime factors. However, writing a number as a product of prime factors can be very time consuming, especially if the number does not have small prime factors.

The **Euclidean algorithm** provides a method for quickly finding the greatest common divisor of any two integers.

GeoGebra.

Given positive integers a and b with $a \ge b$:

- **1** Apply the division algorithm to a and b to find integers q_1 and r_2 such that $a = q_1b + r_1$, where $0 \le r_1 < b$. If $r_1 = 0$, then $b \mid a$ and gcd(a, b) = b.
- **2** If $r_1 \neq 0$, apply the division algorithm to b and r_1 to find integers q_2 and r_2 such that $b = q_2 r_1 + r_2$, where $0 \le r_2 < r_1$. If $r_2 = 0$, then $gcd(a, b) = r_1$.
- **3** If $r_2 \neq 0$, continue the process. This results in the system of equations:

$$a = q_1b + r_1$$
$$b = q_2r_1 + r_2$$
$$r_1 = q_3r_2 + r_3$$

 $r_{n-2} = q_n r_{n-1} + r_n$

 $r_{n-1} = q_{n+1} r_n + 0$

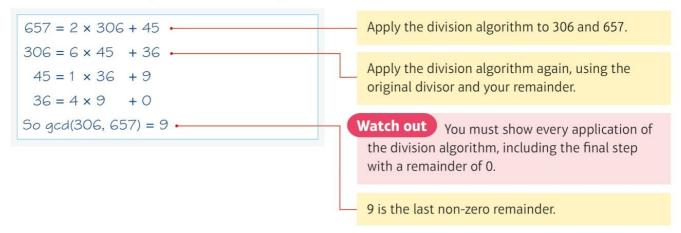
The last non-zero remainder in this process, r_n , is the greatest common divisor (or highest common factor) of a and b.

Problem-solving

This is an iterative process. At the kth step you are applying the division algorithm to r_{k-1} and r_{k-2} to find q_k and r_k such that $r_{k-2} = q_k r_{k-1} + r_k$. By the division algorithm, the remainder must be strictly less than the divisor ($r_k < r_{k-1}$), so the sequence of remainders r_1, r_2, r_3, \ldots must be strictly decreasing. Since all the remainders are non-negative integers, this means that this sequence must terminate at 0 in a finite number of steps. The last **non-zero** remainder in the sequence is the greatest common divisor of a and b.

Example 8

Use the Euclidean algorithm to find the greatest common divisor of 306 and 657.



You can use the Euclidean algorithm and back substitution to write the greatest common divisor of two numbers as a **linear combination** of those two numbers.

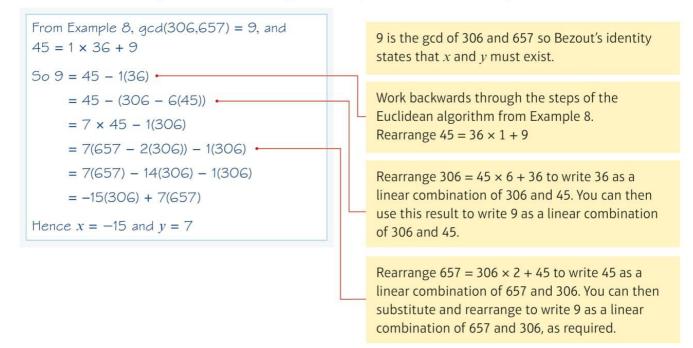
Bezout's identity states that if a and b are non-zero integers, then there exist integers x and y such that gcd(a, b) = ax + by.

Problem-solving

The gcd of two integers a and b is the **smallest** positive integer that can be written as a linear combination of a and b. \rightarrow **Exercise 1B, Challenge**

Example 9

Use the Euclidean algorithm to find integers x and y such that 306x + 657y = 9.



A 24 Paulo has the five letter cards M A T H S

- a Find the number of ways these letters can be arranged.

(2 marks)

- **b** Find the number of these arrangements that contain:
 - i the word |H|A|T
 - ii the letters in the word HAT arranged in any order.

(4 marks)

- (E/P) 25 Find the number of possible different arrangements of the letters in the word MUSKETEER.
 - (3 marks)
 - **26** Five adults and five children take it in turns to serve themselves from a buffet. Find the number of possible orders of people if:
 - a there are no restrictions on order

(2 marks)

b all the adults must serve themselves first.

(3 marks)

27 To play the EuroMillions lottery, you must select 5 different numbers from 1 to 50, and 2 different Lucky Stars from 1 to 12. Find the total number of different ways of selecting these 7 numbers. (4 marks)

(E/P) 28 An artist has n different colours available. She can mix colours in any combination to create new colours. Assume that any unique combination of colours produces a unique colour. Given that the artist can create more than 500 different colours, find the least possible number of different colours she has available. (3 marks)

- (E/P) 29 A set S contains n distinct elements.
 - a Write an expression for the number of different subsets of S containing 3 elements. (1 mark)
 - **b** Write an expression for the total number of different subsets of S. (1 mark)
 - **c** By considering subsets, or otherwise, show that $\sum_{r=0}^{n} {n \choose r} = 2^n$. (3 marks)

Challenge

In this question you may assume Bezout's identity and the division (cancellation) laws for modular congruences.

Euclid's lemma states that if p is a prime number and $p \mid ab$, where a, $b \in \mathbb{Z}$, then either $p \mid a$ or $p \mid b$ (or both).

a Using Bezout's identity, prove Euclid's lemma.

Fermat's little theorem states that if *p* is a prime number then $a^p \equiv a \pmod{p}$

Let a be a positive integer not divisible by p.

- **b** Prove that when the numbers $\{a, 2a, 3a, 4a, \dots, (p-1)a\}$ are reduced to least residues modulo p, they are exactly the members of the set $\{1, 2, 3, 4, \dots, p-1\}$, in some order.
- c By considering the product of all the numbers in each set, prove that $a^p \equiv a(\text{mod } p)$

Summary of key points

- **1** If a and b are integers with $a \neq 0$, then b is divisible by a if there exists an integer k such that b = ka. In this case, we say that a divides b and denote this by $a \mid b$. If a does not divide b, then we write $a \nmid b$.
- **2** For any a, b, $c \in \mathbb{Z}$, with $a \neq 0$:
 - $a \mid a$ (every integer divides itself)
 - $a \mid 0$ (0 is divisible by any integer)
 - $a \mid b$ and $b \mid c \Rightarrow a \mid c$
 - $a \mid b$ and $a \mid c \Rightarrow a \mid bn + cm$ for all $m, n \in \mathbb{Z}$
 - $a \mid b \Leftrightarrow an \mid bn$ for all $n \in \mathbb{Z}$, $n \neq 0$
 - If a and b are positive integers and $a \mid b$ then $a \leq b$
- **3 The division algorithm:** If a and b are integers such that b > 0, then there exist unique integers q and r such that a = bq + r, with $0 \le r < b$.
 - Begin with values of *a* and *b*.
 - Set q equal to the greatest integer that is less than or equal to $\frac{a}{h}$
 - Set r = a bq.
- **4** If a, b, and c are integers and $c \neq 0$, then c is called a **common divisor** of a and b if $c \mid a$ and $c \mid b$.
- **5** The **greatest common divisor** of two integers *a* and *b* is a positive integer *d* that satisfies the two conditions:
 - d|a and d|b
 - if c is a common divisor of a and b, then $c \le d$
- **6** The Euclidean algorithm: Given positive integers a and b with $a \ge b$:
 - Apply the division algorithm to a and b to find integers q_1 and r_1 such that $a = q_1b + r_1$, where $0 \le r_1 < b$. If $r_1 = 0$, then $b \mid a$ and $\gcd(a, b) = b$.
 - If $r_1 \neq 0$, apply the division algorithm to b and r_1 to find integers q_2 and r_2 such that $b = q_2r_1 + r_2$ where $0 \leq r_2 < r_1$. If $r_2 = 0$, then $gcd(a, b) = r_1$.
 - If $r_2 \neq 0$, continue the process. This results in the system of equations:

$$a = q_1 b + r_1$$

$$b = q_2 r_1 + r_2$$

$$r_1 = q_3 r_2 + r_3$$

$$\vdots$$

$$r_{n-2} = q_n r_{n-1} + r_n$$

$$r_{n-1} = q_{n+1} r_n + 0$$

The last non-zero remainder in this process, r_n , is the greatest common divisor of a and b.