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Extra online content

. Extra online content

Whenever you see an Online box, it means that there is extra online content available to support you.
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Extra online content

Use of technology O ")
Explore topics in more detail, visualise @ Find the point of intersection aoes
problems and consolidate your understanding. graphically using technology.
Use pre-made GeoGebra activities or Casio
resources for a graphic calculator.
GeaGebra CASIO.
GeoGebra-powered interactives Graphic calculator interactives
[EXE]:Show coordinates
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Interact with the maths you are Explore the maths you are learning
learning using GeoGebra's easy-to- and gain confidence in using a
use tools graphic calculator

Calculator tutorials . Finding the value of the first derivative
Our helpful video tutorials will P
guide you th rough how to use to access the function press:

your calculator in the exams. s
They cover both Casio's scientific =¥ ) ©

and colour graphic calculators.

[7 6 [ T
(21511 %] - BEEOEE
DEHDS
oaonDD

P Pearson

vick S tha g o ver instructions on exactly which
quickly using the °C.and powe buttons to press and what should
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Overarching themes

. Overarching themes

The following three overarching themes have been fully integrated throughout the Pearson Edexcel
AS and A level Mathematics series, so they can be applied alongside your learning and practice.

1. Mathematical argument, language and proof

¢ Rigorous and consistent approach throughout

« Notation boxes explain key mathematical language and symbols

« Dedicated sections on mathematical proof explain key principles and strategies

« Opportunities to critique arguments and justify methods

2. Mathematical problem solving The Mathematical Problem-solving cycle
* Hundreds of problem-solving questions, fully integrated specify the problem
into the main exercises

¢ Problem-solving boxes provide tips and strategies interpret results
collect information

e Structured and unstructured questions to build confidence

¢ (hallenge boxes provide extra stretch process and

i 5 represent information
3. Mathematical modelling

¢ Dedicated modelling sections in relevant topics provide plenty of practice where you need it

¢ Examples and exercises include qualitative questions that allow you to interpret answers in the
context of the model

« Dedicated chapter in Statistics & Mechanics Year 1/AS explains the principles of modelling in
mechanics

Finding your way around the book Access an online
digital edition using
the code at the

2 Functions and graphs front of the book.

Each chapter starts with
a list of objectives

The real world applications
of the maths you are about
to learn are highlighted at
the start of the chapter with
links to relevant questions in
the chapter

The Prior knowledge check
helps make sure you are
ready to start the chapter
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Overarching themes

Exercise questions are
carefully graded so they
increase in difficulty and
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are ready for the exams
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Every few chapters a Review exercise
helps you consolidate your learning
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Algebraic methods

After completing this chapter you should be able to:

You can use proof by contradiction to
prove that there is an infinite number

of prime numbers. Very large prime
numbers are used to encode chip and pin
transactions. -» Example 4, page 3

Use proof by contradiction to prove true statements
Multiply and divide two or more algebraic fractions
Add or subtract two or more algebraic fractions

Convert an expression with linear factors in the
denominator into partial fractions

Convert an expression with repeated linear factors
in the denominator into partial fractions

Divide algebraic expressions

Convert an improper fraction into partial fraction form

| Prio

-» pages 2-5
-» pages 5-7
-» pages 7-8

- pages 9-11
- pages 12-13

— pages 14-17
-» pages 17-18

r knowledge check

1 Factorise each polynomial:

a x2—6x+5 b
c 9x2-25

x2 —-16
« Year 1, Section 1.3

Simplify fully the following algebraic

fractions.
xt-9
X +9x + 18
x2=x-30
—x2+3x+ 18

2x24+5x—-12
6x2—7x-3

¢ Year 1, Section 7.1

For any integers n and m, decide whether
the following will always be odd, always be

even, or could be either.
a 8n b n-m
c 3m

d 2n-5

« Year 1, Section 7.6




Chapter 1

m Proof by contradiction

A contradiction is a disagreement between two statements, which means that both cannot be true.
Proof by contradiction is a powerful technique.

To prove a statement by contradiction you start by assuming m T

it is not true. You then use logical steps to show that this thit ascorts thefalschond

assumption leads to something impossible (either a of another statement is
contradiction of the assumption, or a contradiction of a called the negation of
fact you know to be true). You can conclude that your that statement.

assumption was incorrect, and the original statement was true.

Prove by contradiction that there is no greatest odd integer.

Begin by assuming the original statement is false.
This is the negation of the original statement.

Assumption: there is a greatest odd
integer, n.

n+2isalsoanintegerana n+2 > n

You need to use logical steps to reach a
n+ 2 = odd + even = odd

contradiction. Show all of your working.
So there exists an odd integer greater than n.
This contradicts the assumption that the The existence of an odd integer greater than n
greatest odd integer is n. contradicts your initial assumption.
Therefore, there is no greatest odd integer

| Finish your proof by concluding that the original
statement must be true.

Prove by contradiction that if »? is even, then n must be even.

Assumption: there exists a number n such ————— This is the negation of the original statement.
that n2 is even but n is odd.

nis odd so write n = 2k + 1 1 You can write any odd number in the form 2k + 1
"2 = (2k + 1)2 = 4k + 4k + 1 where k is an integer.

= 2(2k2 + 2k) + 1
So n2is odd. L All multiples of 2 are even numbers, so 1 more

This contradicts the assumption that n? is than a multiple of 2 is an odd number.

EVvier.
Finish your proof by concluding that the original

Therefore, if n? is even then n must be even.
statement must be true.

: ; a :
= Arational number can be written as b’ where « and b are integers. m Qisthe

set of all rational

® Anirrational number cannot be expressed in the form % , where a numbers.

and b are integers.



Algebraic methods

Prove by contradiction that v2 is an irrational number.

Assumption: V2 is a rational numbern Begin by assuming the original statement is false.
1

Then V2 = 9 tor some inte ers, a and b. p—— ]
b 4 This is the definition of a rational number.

Also assume that this fraction cannot be

reduced further: there are no common factors 1 Ifaand b did have a common factor you could just
between a and b. cancel until this fraction was in its simplest form.

2

- 2 = Oh2
So2~beoraw2b |

Square both sides and make «? the subject.
This means that a® must be even, so a is also »I—I_

eNeEn We proved this result in Example 2.
If a is even. then it can be expressed in the

form @ = 2n, where n is an integer.

So a? = 2b% becomes (2n)2 = 2b% which

means 4n® = 2b? or 2n? = b®,

This means that A% must be even, so b is also

Again using the result from Example 2.
ever.

If a and b are both even, they will have a

common factor of 2. All even numbers are divisible by 2.

This contradicts the statement that a and b

have no common factors. y . o
Finish your proof by concluding that the original

statement must be true.

Therefore V2 is an ireational number:

Prove by contradiction that there are infinitely many prime numbers.

Assumption: there is a finite number of prime « Begin by assuming the original statement is false.

numbers.

List all the prime numbers that exist:
P Pos Pz -os Py
Consider the number

r This is a list of all possible prime numbers.

This new number is one more than the product of

N=p % PPy % .o % 1 C 7
Ry e s a the existing prime numbers.

When you divide N by any of the prime
nUMbErs Py, Pas Pa, - P YOU gét a remainder
of 1. So nene of the prime numbers p,. p;. ps.
o Py 18 3 factor of N.

So N must either be prime or have a2 prime . . . "
' P This contradicts the assumption that the list

Pu P2 P -, Pn cONtains all the prime numbers.

factor which is not in the list of all possible
prime numbers. ’7

This is a contradiction.
Conclude your proof by stating that the original

Therefore, there is an infinite number of prime «———
statement must be true.

numbeers.




Chapter 1

Exercise @

® 1

Select the statement that is the negation of ‘All multiples of three are even’.
A All multiples of three are odd.

B At least one multiple of three is odd.

C No multiples of three are even.

Write down the negation of each statement.

a All rich people are happy.

b There are no prime numbers between 10 million and 11 million.

¢ If p and ¢g are prime numbers then (pg + 1) is a prime number.

d All numbers of the form 27 — 1 are either prime numbers or multiples of 3.
e At least one of the above four statements is true.

Statement: If #” is odd then n is odd.
a Write down the negation of this statement.
b Prove the original statement by contradiction.

Prove the following statements by contradiction.

a There is no greatest even integer.

b If »* is even then n is even.

¢ If pg is even then at least one of p and ¢ is even.
d

If p + ¢ 1s odd then at lcast one of p and ¢ 1s odd.

a Prove that if @b is an irrational number then at least one of @ and b is an irrational number.
(3 marks)

b Prove that if ¢ + b is an irrational number then at least one of ¢ and b is an irrational
number. (3 marks)

¢ A student makes the following statement:
If a + b 1s a rational number then at least one of ¢ and b is a rational number.

Show by means of a counterexample that this statement is not true. (1 mark)

Use proof by contradiction to show that there exist m S he GBI
no integers ¢ and b for which 21a + 14b = 1. and then divide bot?}psides by e

highest common factor of 21 and 14.

a Prove by contradiction that if »? is a multiple of 3, m Artidernunberln e it
n is a multiple of 3. (3 marks) ke ANt an e

b Hence prove by contradiction that v3 is an
irrational number. (3 marks)



Algebraic methods

@ 8 Use proof by contradiction to prove the statement: m ol Caf st atia
“There are no integer solutions to the equation are posithve, sice (e 52 ¥
- e ' .
9 Prove by contradiction that V2 is irrational. (5 marks)

10 This student has attempted to use proof by contradiction to show that there is no least positive
rational number:

Assumption: There is a least positive rational number. Problem-solving

Let this least positive rational number be n. You might have to

where a and b are integers. analy'se s'tuden‘t
working like this

4

As nis rational, n = ;
'}

n_1=9_q-4d-b in your exam. The
) ) question says, ‘the
Since a and b are integers, 9~ 2 is 2 rational number that is less than n. error’, so there Sh(_mld
only be one error in
This contradicts the statement that n is the least positive rational number. the proof.

Therefore, there is no least positive rational number.

a Identify the error in the student’s proof. (1 mark)
b Prove by contradiction that there is no least positive rational number. (5 marks)

@ Algebraic fractions

Algebraic fractions work in the same way as numeric fractions. You can simplify them by cancelling
common factors and finding common denominators.

» To multiply fractions, cancel any common factors, then multiply the numerators and
multiply the denominators.

Example o

Simplify the following products:

g Do p Lyl o X+l 3
579 b a 2 x2-1
'3 . ,_5_’"_ Ix1 _ 1 Cancel any common factors and multiply
: o By 1%38 3 numerators and denominators.
b " i _ Ixe_c
b a4 bx1 b | Cancel any common factors and multiply
numerators and denominators.
. 9 3 _xxt 3
2 X -F 2 x + N(x = 1) ——]»
i -2 __
=,.m ’ 3 Factorise (x2 — 1).
2 T (eFNx-1
3 Cancel any common factors and multiply
= ﬁfﬁ numerators and denominators.
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