

REVISE PEARSON EDEXCEL GCSE (9–1) Mathematics

REVISION NOTEBOOK

SCAN

ORGANISE

REVISE

your notes with the free

revise pearson edexcel gcse (9–1) Mathematics foundation

Series Consultant: Harry Smith

Also available to support your revision:

Revise GCSE Study Skills Guide 9781447967071

The **Revise GCSE Study Skills Guide** is full of tried-andtrusted hints and tips for how to learn more effectively. It gives you techniques to help you achieve your best – throughout your GCSE studies and beyond!

Revise GCSE Revision Planner 9781447967828

The **Revise GCSE Revision Planner** helps you to plan and organise your time, step-by-step, throughout your GCSE revision. Use this book and wall chart to mastermind your revision.

For the full range of Pearson revision titles across KS2, KS3, GCSE, Functional Skills, AS/A Level and BTEC visit: www.pearsonschools.co.uk/revise

Introduction

Copyrighted Material

Making great revision notes

Making your own revision notes is one of the best ways to revise. Unlike in your exam, there are no right answers when it comes to making revision notes – you get to decide which methods of making notes work best for you.

The 1-2-3 method

You can use this method to get started with your own revision notes:

Super-summaries

Once you have finished a page of notes, try to summarise the most important facts or skills in one or two bullet points. When you are scanning back through your notes, this summary can help to trigger your memory for **all** the notes on that page.

You can use these super-summaries to make **flashcards** later on in your revision, or scan through them quickly the night before the exam. You could even compile them all into a **one-pager** – this is **one side of A4** with a list of the key points or topics to remember for a particular exam.

Checklists **Bullets** Write lists of things you Use short sentences starting need to remember. These on new lines rather than full could be: paragraphs to make notes on: vocabulary or key words reasons or opinions dates and places advantages and steps in a skill or disadvantages process. • causes and effects. Top note-making Boxes techniques Draw boxes to make parts Concept maps of your notes stand out Use a central heading and (or stay separate). For arms to write notes - just example: like this! Works great for: key formulae or golden • different examples of rules something case studies. links between topics. **Keep it interesting** CLOUDS There are lots of simple ways to spice up your notes. Try some of the ideas on the right, or come up with your own colour-code, for example: black = normal text BANNERS • blue = tricky topic MAKE LINKS yellow highlighter = key word red arrow = connections. UNDERLINING STICK THINGS IN HIGHLIGHTING Some dos and don'ts of revision notes **Use headings** – structure your notes in X Loose pages - don't tuck sheets of digestible chunks. paper into your notes. They can fall out and get out of order. **Keep it neat** – the best notes are ones you can read back over later in your X Elaborate diagrams - don't waste a lot of time copying complicated graphs or revision. pictures. You can always refer back to the Recap and repeat – aim to look back over textbook if you need to. each set of notes at least once. X Long paragraphs – it's easier to revise Look after yourself – drink plenty of from lists, bullets and key points than from water, get plenty of sleep and take regular dense passages of text. breaks. _ _ _ _ _ _ _ _ _ Shorthand

Contents

	RODUCTION	49	Simultaneous equations	97	Plans and elevations
i	Making great revision notes	50	Rearranging formulae	98	Scale drawings and maps
NUMBER		51	Using algebra	99	Constructions 1
1	Place Value	52	Identities and proof	100	Constructions 2
2	Negative numbers	53	Problem-solving practice 1	101	Loci
2	Rounding numbers	54	Problem-solving practice 2	102	Bearings
4	Adding and subtracting	RAT		103	Circles
5	Multiplying and dividing	55	Percentages	104	Area of a circle
6	Decimals and place value	56	Fractions decimals and	105	Sectors of circles
7	Operations on decimals	00	percentages	106	Cylinders
, 3	Squares cubes and roots	57	Percentage change 1	107	Volumes of 3D shapes
- Э	Indices	58	Percentage change 2	108	Surface area
0	Estimation	59	Ratio 1	109	Similarity and congruence
1	Eactors multiples and	60	Ratio 2	110	Similar shapes
	primes	61	Metric units	111	Congruent triangles
2	HCF and ICM	62	Reverse percentages	112	Vectors
3	Fractions	63	Growth and decay	113	Problem-solving practice 1
4	Operations on fractions	- 64	Speed	114	Problem-solving practice 2
5	Mixed numbers	65	Density		BABILITY AND STATISTIC
6	Calculator and number skills	66	Other compound measures	115	Two-way tables
7	Standard form 1	67	Proportion	116	Pictograms
, 8	Standard form 2	68	Proportion and araphs	117	Bar charts
9	Counting strategies	69	Problem-solving practice 1	118	Pie charts
20	Problem-solving practice 1	70	Problem-solving practice 2	119	Scatter araphs
-0 21	Problem-solving practice 2	/0	Problem Solving Procedee E	120	Averages and range
- 1	Problem Solving Practice 2	GEO	METRY AND MEASURES	121	Averages from tables 1
\LG	EBRA	71	Symmetry	122	Averages from tables 2
22	Collecting like terms	72	Quadrilaterals	123	line graphs
23	Simplifying expressions	73	Angles 1	120	Stem and leaf diagrams
24	Algebraic indices	74	Angles 2	124	Samplina
25	Substitution	75	Solving angle problems	120	Comparing data
26	Formulae	76	Angles in polygons	120	Probability 1
27	Writing formulae	77	Time and timetables	128	Probability 2
28	Expanding brackets	78	Reading scales	120	Relative frequency
29	Factorising	79	Perimeter and area	120	Frequency and outcomes
30	Linear equations 1	80	Area formulae	120	Venn diagrams
31	Linear equations 2	81	Solving area problems	120	Set notation
32	Inequalities	82	3D shapes	122	Independent events
33	Solving inequalities	83	Volumes of cuboids	127.	Problem-colving practice 1
34	Sequences 1	84	Prisms	125	Problem-solving practice ?
35	Sequences 2	85	Units of area and volume	100	
36	Coordinates	86	Translations		
37	Gradients of lines	87	Reflections		
38	Straight-line graphs 1	88	Rotations		
39	Straight-line graphs 2	89	Enlargements	A em	all bit of small print
40	Real-life graphs	90	Pythagoras' theorem	Fdev	cel publishes Sample
41	Distance-time graphs	91	Line segments	Luck Acco	ssment Material and the
42	Rates of change	92	Trigonometry 1	5000 Snor	ification on its website
43	Expanding double brackets	93	Trigonometry 2	Thic i	s the official content and
44	Quadratic graphs	94	Solving trigonometry	thic L	and should be used in
<i>4</i> 5	Using quadratic graphs		problems	coniu	nction with it
46	Factorising quadratics	95	Measuring and drawing	Conjt	
47	Quadratic equations		angles		
, +8	Cubic and reciprocal graphs	96	Measuring lines		

L Copyrighted Ma	aterial Number
Place	lue
The value of each digit in a number depends on i 6349 = 1000000000000000000000000000000000000	its position .
If you only remember two things • Tenths are bigger than hundredths, which are big • When working with money, work in either pounds	ger than thousandths. or pence, but not both.
7 Had a go Nearly the	re Nailed it! 1

ſ

L

Negative numbers

WNumbers lower than O are called negative numbers.

To add or subtract a negative number, change the double signs first.

 $\begin{array}{c} +- \rightarrow -\\ -- \rightarrow +\end{array}$

If you only remember two things...

• When you add a negative number, the answer is lower.

• When you subtract a negative number, the answer is higher.

J

Copyrighted Material

Number

7

Rounding numbers

To round a number, you look at the **next digit to the right** on a place value diagram. $\bigvee 5$ or more \rightarrow round up, less than $5 \rightarrow$ round down.

If you only remember one thing...

Had a go

• The first significant figure is the first non-zero digit.

Nearly there

Adding and subtracting

When adding or subtracting whole numbers, add or subtract the **units column** first, then the tens, then the hundreds.

Don't forget to **carry** or '**borrow**' where necessary.

If you only remember one thing...

• Make sure you are confident using written or mental methods and using a calculator.

-

Copyrighted Material

7

Multiplying and dividing

When you multiply, start with the digit furthest to the **right**. When you divide, start with the digit furthest to the **left**.

If you only remember one thing...

Had a go

• Show your working even if you use a mental method or a calculator.

Nearly there

Decimals and place value

Y To compare decimal numbers start with the place value furthest to the left.
 Y Make sure the decimal points align vertically.

If you only remember one thing...

• Decimal numbers with more digits are not necessarily bigger.

J

Copyrighted Material

Number

Operations on decimals

To multiply decimals, ignore the decimal point and **multiply as normal**. Then count the **total number of decimal places** in the question and use the same number of decimal places in the answer.

If you only remember one thing...

Had a go

• When using a written method to add or subtract decimal numbers make sure the decimal points line up.

Squares, cubes and roots

 \bigvee A whole number multiplied by itself gives a **square number**.

A whole number multiplied by itself and then multiplied by itself again gives a **cube number**.

If you only remember two things...

• Learn the squares of the numbers from 1 to 15, and the corresponding square roots.

Nearly there

• Learn the cubes of 2, 3, 4, 5 and 10 and the corresponding cube roots.

Copyrighted	Material
-------------	----------

J

If you only remember one thing...

Had a go

• When you multiply you add the powers, and when you divide you subtract the powers.

Nearly there

7-

Estimation

You can estimate the answer to a calculation by **rounding each number** to 1 significant figure, and then doing the calculation.

If you only remember one thing...

• Write down your rounded values before doing the calculation.

Nearly there

Copyrighted Material

Number

Factors, multiples and primes

The **factors** of a number are any numbers that divide into it exactly.

A prime number has exactly two factors.

 \bigvee The **multiples** of a number are all the numbers in its times table.

If you only remember one thing...

• Use a factor tree to find prime factors.

Nearly there

Had a go

Number

L

HCF and LCM

The highest common factor (HCF) of two numbers is the **highest number that is a factor of both numbers**.

The lowest common multiple (LCM) of two numbers is the **lowest number that is a** multiple of both numbers.

If you only remember one thing...

• Use a Venn diagram to help you to find the HCF and LCM.

-]

Copyrighted Material

Number

Fractions

The top number in a fraction is called the **numerator**, and the bottom number is called the **denominator**.

Equivalent fractions describe the same amount.

You can **simplify** a fraction by dividing the numerator and denominator by a common factor.

If you only remember one thing...

Had a go

• To find a fraction of an amount, divide by the denominator then multiply by the numerator.

Nearly there

7.

Operations on fractions

Adding or subtracting fractions – write the fractions with the same denominator.

Wultiplying fractions – Multiply the numerators and denominators.

 \bigvee **Dividing** fractions – Turn the second fraction upside-down and change \div to \times .

If you only remember one thing...

• Use LCMs to find the common denominator for additions and subtractions.

Copyrighted Material

Number

Mixed numbers

Wixed numbers have a whole number part and a fraction part.

V Improper fractions have a numerator larger than their denominator.

If you only remember one thing...

Had a go

• Write mixed numbers as improper fractions before multiplying or dividing.

Nearly there

Calculator and number skills

 \bigvee Remember the order of operations: **BIDMAS**.

To find the **reciprocal** of a number you write it as a fraction then turn the fraction upside down.

• Show your working even when you use a calculator.

Nearly there

J Copyrighted Material Number
Standard form 1
Numbers in standard form have two parts . 7.3×10^{-6}
This part is a numberThis part is agreater than or equal topower of 101 and less than 10
You can enter numbers in standard form on a calculator using the $\times 10^{10}$ key.
 If you only remember one thing Numbers written in standard form only have one digit to the left of the decimal point.
Had a go Nearly there Nailed it! 17

L

ſ

Standard form 2

To **multiply or divide** numbers in standard form multiply or divide the number parts, then the powers of 10.

To add or subtract numbers in standard form write them as ordinary numbers first.

If you only remember one thing...

• If you are asked for an answer in standard form, double check that your answer is in the correct form.

Nearly there

Nailed it!

-

Copyrighted Material

Number

77

Counting strategies

A **systematic** method means that you have found every possible combination.

If you only remember one thing...

Had a go

• You can number items in lists to save time in the exam.

Nearly there

Problem-solving practice 1

Use this page and the next page to make notes on problem-solving strategies that work for you, or to practise problem-solving questions.

16	vou	onlv	remember	one	thing
100	y				

- If a question is worth more than 1 mark, that means you ${\tt must}$ show some workings.

20

Nailed it!