This test is divided into non-calculator (40 minutes) and calculator (20 minutes) sections which can be delivered separately.
The following marks are awarded for each question.

B	Unconditional accuracy mark
M	Method mark - the correct method must be shown but there may be an arithmetic error; the sight of the value given in brackets implies the award of the method mark
A	Accuracy mark - unless the question specifies that working must be shown then the sight of the correct answer implies the award of full marks (unless the answer clearly comes from incorrect working)
C	Communication mark
P	Process mark to show correct process for problem solving. Any other process of a similar standard to achieve an accurate result is acceptable to achieve this mark
FT	Incorrect values may be followed through from one step to the next provided that the correct method is seen in each step and the only errors are arithmetic. This is shown in mark schemes by putting a number in inverted commas
OE	Or equivalent answer mark

Non-Calculator	Answer	Mark	Comment
Q		B2	B1 for $-2,-1,0,1,2$ or any three correct with none incorrect, e.g. $-1,0,1$
1	$-2,-1,0,1$	B1	
$2 a$	$x \geqslant 1$	$-2<x \leqslant 3$	B2
$2 b$	3	B1 for $-2<x<3$ or $-2 \leqslant x \leqslant 3$	

5	$x=-2, y=1.5$	M1	for method to eliminate one variable e.g. $(6 x+4 y=-6)-(6 x+18 y=15)$ and $14 y=21$; allow one arithmetic error for method to find the other variable e.g. $3 x+2(" 21 \div 14 ")=-3$; allow one arithmetic error for $x=-2$ and $y=1.5 \mathrm{OE}$, e.g. $\frac{3}{2}$
6	$x>-8$	M1	for correctly isolating the term in x in an equation or inequality, e.g. $-4 x<37-5$ or $x=-8$
7a	$(x=) 5$	M1 M1 M1 A1	for $(x+3)(x-2)=24$ (indep) for expansion of brackets e.g. $x^{2}-2 x+3 x-6(=24)$; condone one error for $(x \pm 6)(x \pm 5)=0$ or any method to solve for x accept $(x=) 5$ and $(x=)-6$
7 b	$8(\mathrm{~cm})$ and $3(\mathrm{~cm})$	B1	FT from $x=6$, i.e. 9 and 4
8 a	$(x=) 3$ and $(x=)-8$	M1 A1	for $(x \pm 3)(x \pm 8)(=0)$
8b	$(x=) 5$ and $(x=) 6$	M1 A1	for $(x \pm 5)(x \pm 6)(=0)$
9a	$p=-3, q=-6$	M1 A1	for $(x-3)^{2}-9+3$; allow one error with -9 or +3 or missing -9 or +3 accept $(x-3)^{2}-6$
9b	$(x=) 3 \pm \sqrt{6}$	M1 M1 A1	for " $(x+p)^{2} "="-q$ " e.g. $(x-3)^{2}=6$ for " $(x+p)$ " $=\sqrt{-q}$ e.g. $x-3=\sqrt{6}$

10a	$\begin{aligned} & 2 a+3 b=4 a-3 b \\ & a+3=4 b \end{aligned}$	B1	for $2 a+3 b=4 a-3 b$ OE for $a+3=4 b \mathrm{OE}$
		B1	
10b	$a=9$ and $b=3$	M1	for method to eliminate one variable, e.g. $2(4 b-3)+3 b=4(4 b-3)-3 b$; allow one error for method to find the other variable, e.g. $a+3=4 \times$ " 3 "; allow one arithmetic error
		M1	
		A1	

Calculator

11	$-\frac{9}{4}<x<\frac{14}{4}$	M1	for $-\frac{9}{4}<x$ OE or $x<\frac{14}{4} \mathrm{OE}$
		A1	$\text { for }-\frac{9}{4}<x<\frac{14}{4} \text { OE }$
12	(coffee costs) $£ 2.80$ (tea costs) £1.50	M1	for setting up two equations, e.g. $\begin{aligned} 2 c+3 t & =10.1(0) \text { and } \\ 3 c+5 t & =15.9(0) \end{aligned}$
		M1	for method to eliminate one variable e.g. $(6 c+9 t=30.3)-(6 c+10 t=31.8)$; allow one arithmetic error
		M1	for method to find the other variable, e.g. $2 \mathrm{c}+3 \times 1.5 \mathrm{~F}=10.1$
		A1	must have appropriate units; working can be done in pence or $£$
13	$(x=) 0.298$ and $(x=)-1.44$	M1	for $(x=) \frac{-8 \pm \sqrt{8^{2}-4(7)(-3)}}{2(7)} \mathrm{OE}$; allow one sign error
		M1	for simplification to $(x=) \frac{-8 \pm \sqrt{148}}{14}$
		A1	$\begin{aligned} & \text { accept } 0.297 \text { to } 0.298 \text { and }-1.44 \\ & \text { to }-1.441 \end{aligned}$ with at least M1 scored; award no mark for answers only

14	$(1,18)$	M1	for $x^{2}+3 x+5=5 x+13$ OE for rearranging to $a x^{2}+b x+c=0$, e.g. $x^{2}-2 x-8=0$ for $(x \pm 4)(x \pm 2)$ OE or any method to solve for x for $(4,33)$ and $(-2,3)$; could be in the form $x=\ldots y=\ldots$ for method to find the midpoint or for $x=1$ or for $y=18$ accept $x=1$ and $y=18$
		M1	
		M1	
		A1	
		M1	
		A1	

Non-Calculator

Question	Topic	Step	Mark
1	Write down whole number values that satisfy an inequality	6 th	2
2 a	Show inequalities on a number line	6 th	1
2 b	Show inequalities on a number line	6 th	2
3	Solve simple linear inequalities in one variable and represent the solution on a number line e.g. $3 n+2<11$ and $2 n-1>1$	7 th	3
4	Solve simple linear inequalities in one variable and represent the solution on a number line e.g. $3 n+2<11$	7 th	3
5	Solve two linear simultaneous equations algebraically, where neither or one equation needs multiplying	8 th	3
6	Know that when dividing an inequality by a negative number the inequality sign changes	7 th	2
7 a	Rearrange and solve equations involving square root of $(x \pm b)$	8 th	4
7 b	Rearrange and solve equations involving square root of $(x \pm b)$	8 th	1
8 a	Solve simple quadratic equations algebraically by factorising	8 th	2
8 b	Solve simple quadratic equations algebraically by factorising	8 th	2
9 a	Solve quadratic equations of the form $x 2+b x+c$ by completing the square	10 th	2
9 b	Solve quadratic equations of the form $a x 2+b x+c$ by completing the square	12 th	3
10 a	Set up and solve a pair of simultaneous equations in two variables	9 th	2
10 b	Set up and solve a pair of simultaneous equations in two variables	9 th	3

Calculator	Step	Mark	
Question	Topic	8th	2
11	Solve more complex linear inequalities in one variable and represent the solution on a number line e.g. $-6<$	9 th	4
12	Make and solve simultaneous equations	10 th	3
13	Solve simple quadratic equations by using the quadratic formula	12th	6
14	Solve exactly, by substitution, a pair of linear and quadratic simultaneous equations		

Marks to Steps conversion table

The table below converts marks to a step on the Pearson progression scale. For more information on the progression service please see the progression website.

Mark boundary	Step
0	U
1	4th Step
$2-5$	5th Step
$6-11$	6th Step
$12-19$	7th Step
$20-26$	9th Step
$27-33$	10th Step
$34-39$	11th Step
$40-48$	12th Step
$49-50$	

