

Edexcel GCSE (9–1) Statistics

New edition

Contents

How to use this book

1 Collection of data

1.1	Describing data	7				
1.2	Grouping data	9				
1.3	Primary and secondary data	14				
1.4	Populations	17				
1.5	Petersen capture-recapture formula	20				
1.6	Random sampling	22				
1.7	Non-random sampling	24				
1.8	Stratified sampling	27				
1.9	Collection of data	29				
1.10	Questionnaires and interviews	33				
1.11	Problems with collected data	38				
1.12	Controlling extraneous variables	40				
1.13	Hypotheses	43				
1.14	 Designing investigations 	44				
Che	ck up	46				
Stre	ngthen	48				
Exte	nd	51				
Sum	Summary					
Test		55				

2 Processing and representing data

2.1	Tables	57
2.2	Two-way tables	61
2.3	Pictograms	64
2.4	Bar charts	67
2.5	Stem and leaf diagrams	72
2.6	Pie charts	76
2.7	Comparative pie charts	79
2.8	Population pyramids	83
2.9	Choropleth maps	89
2.10	Histograms and frequency polygons	94
2.11	L Cumulative frequency charts	98
2.12	The shape of a distribution	103
2.13	Histograms with unequal class widths	107
2.14	 Misleading diagrams 	113
2.15	Choosing the right format	116
Che	ck up	121
Stre	ngthen	126
Exte	131	
Sum	imary	135
Test		137

3 Summarising data	140
3.1 Averages	141
3.2 Averages from frequency tables	144
3.3 Averages from grouped data	148
3.4 Transforming data	155
3.5 Geometric mean and weighted mean	158
3.6 Measures of dispersion for discrete data	161
3.7 Measures of dispersion for grouped data	164
3.8 Standard deviation	170
3.9 Box plots and outliers	175
3.10 Skewness	180
3.11 Deciding which average to use	183
3.12 Comparing data sets	186
3.13 Making estimates	191
Check up	194
Strengthen	197
Extend	200
Summary	202
Test	204

4 Scatter diagrams and correlation **4.1** Scatter diagrams **4.2** Correlation **4.3** Causal relationships **4.4** Line of best fit **4.5** Interpolation and extrapolation **4.6** The equation of a line of best fit 4.7 Spearman's rank correlation coefficient **4.8** Calculating Spearman's rank correlation coefficient **231 4.9** Pearson's product moment correlation coefficient Check up Strengthen Extend Summary Test

Time series

5.1 Line graphs and time series	245
5.2 Trend lines	248
5.3 Variations in a time series	250
5.4 Moving averages	253
5.5 Estimating seasonal variations and making	
predictions	257
Check up	264
Strengthen	266
Extend	267
Summary	269
Test	270

Contents

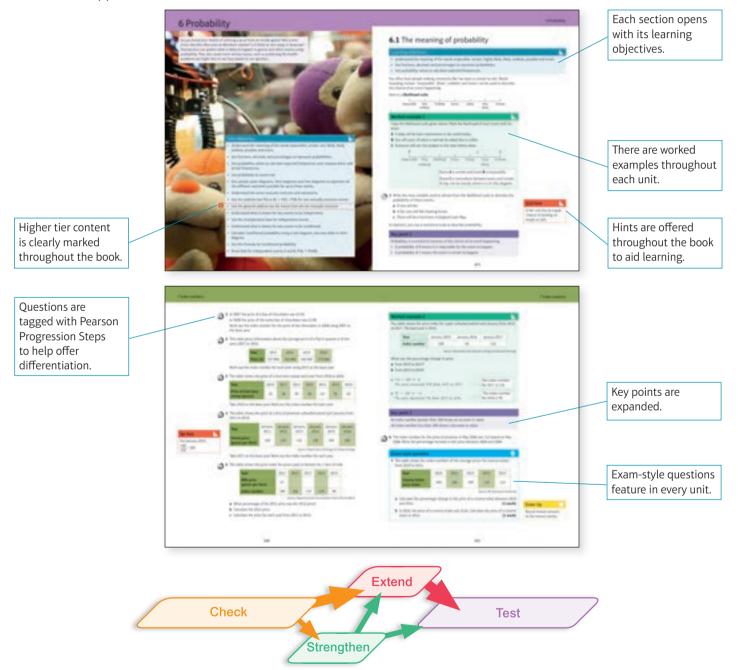
6 Probability

6.1 The meaning of probability	273
6.2 Experimental probability	277
6.3 Using probability to assess risk	280
6.4 Sample space diagrams	282
6.5 Venn diagrams	285
6.6 Mutually exclusive and exhaustive events	290
6.7 The general addition law	294
6.8 Independent events	296
6.9 Tree diagrams	298
6.10 Conditional probability	302
6.11 The formula for conditional probability	306
Check up	308
Strengthen	310
Extend	313
Summary	315
Test	317

272

318

7 Index numbers7.1 Index numbers


7.1	Index numbers	319
7.2	RPI, CPI and GDP	322
7.3	Chain base index numbers	326
7.4	Rates of change	328

Check up	334
Strengthen	336
Extend	338
Summary	339
Test	340
8 Probability distributions	342
8.1 Binomial distributions	343
8.2 Normal distributions	347
8.3 Standardised scores	355
8.4 Quality assurance and control charts	356
Check up	362
Strengthen	364
Extend	367
Summary	368
Test	369
Thinking statistically	371
Preparing for your exams	375
Answers	383
Index	432

How to use this book

This book is designed to give you the best preparation for your GCSE Statistics examination.

- Follows the same structure as the Edexcel scheme of work
- Supports both Foundation and Higher students
- Offers differentiated questions
- Features exam-style questions and exam preparation sections
- Gets you thinking statistically
- Includes support on calculators

Each unit ends with a set of questions to check understanding and then routes students through to either Strengthen questions or Extend questions before the unit closes with a Test.

1 Collection of data

Data is crucial to the way our lives work – from communicating with friends to how we develop and trial new medicines. Statistics is all about using data to find answers to questions. Without data, there would be no statistics. The first step in any statistical investigation is to pose a question. What are you trying to find out and what data will help you find the answer?

Unit objectives

н

н

- Use correct terminology to describe different types of data and know the differences between them.
- Know how to group rounded and unrounded data into class intervals or categories and the advantages and disadvantages of doing so.
- Understand population, sample and sample frame, and identify these for given data.
- Use the Petersen capture–recapture formula to estimate the size of a population and know the assumptions made when using this method.
- Know and be able to describe different methods of random and non-random sampling, including the advantages and disadvantages of each.
- Select a sample stratified by one category and by more than one category.
- Know the key features to consider when planning interviews and questionnaires.
- Write and identify suitable questions for investigations.
- Write a hypothesis and decide on suitable data to collect to test it.
- Design a data collection sheet, and collect data from different sources.
- Know the advantages of using a pilot survey.
- Use the random response method for sensitive questions.
 - Know possible constraints on an investigation and how to deal with difficulties such as non-response.
 - Know potential problems with collected data and how to deal with them.
 - Know how and why to clean data. Identify and control extraneous variables.
- Understand and know when to use control groups and matched pairs.

1.1 Describing data

Learning objectives

- Describe different types of data.
- Know the difference between quantitative and qualitative, discrete and continuous data.

Raw data is data just as it is collected – before it is ordered, grouped or rounded.

A statistical enquiry collects raw data on variables such as eye colour, height, price, number of followers, or level of education, to help investigate a hypothesis.

Key point 1

Raw data is either

quantitative – numerical observations or measurements, such as 10, 5.2, 39 cm or **qualitative** – non-numerical observations, such as blue, A levels, cat.

6th

1 Which of these are qualitative data and which are quantitative data?

- **A** Number of pets
- **B** Height
- **C** Make of car

Exam-style question

2 Maya is planning an investigation into this hypothesis:

'People with a university degree earn more than people without a university degree.'

State the **two** types of data she could collect to investigate this hypothesis and whether each type of data is qualitative or quantitative. (2 marks)

Key point 2

Quantitative data is either:

continuous – can take any value on a continuous numerical scale, such as length or mass

or **discrete** – can only take particular values on a continuous numerical scale, such as shoe size or number of pets.

The length of a piece of string could take any value on this scale.

It is continuous data.

- 3 Are these discrete data or continuous data?
 - A The weight of a dog
 - **B** The number of flowers in a bouquet
 - **C** The time it takes to bake a cake

4 Julita sold raffle tickets at a village fair.

The tickets were red, green, blue and yellow.

discrete continuous qualitative quantitative

Which of the words above can be used to describe:

- **a** the number of tickets sold?
- **b** the colour of tickets sold?

Key point 3

Categorical data can be sorted into non-overlapping categories.

Worked example 1

Jamal collects data on the colour and engine size of cars. Suggest categories for sorting the data.

Colour can be sorted into silver, red, blue, other. Engine size e can be sorted into $e \leq 1$ litre 1 litre $< e \leq 2$ litres e > 2 litres Suggest some colour groups. Include 'other' to cover any you have not thought of, or mixed colours such as a red and black car.

do not overlap. 1 litre can only be included in one category.

Make sure numerical categories

Ordering raw data can make it easier to use or display.

Questions such as 'Number your three favourite pizzas, with 1 for your first choice and so on' give data in a natural order, with 1 being the most popular.

Questions such as 'On a scale of 1–5, how likely are you to shop here again, where 1 is very unlikely and 5 is very likely?' use a numerical rating scale, so answers can be ordered by their rating score.

Key point 4

Ordinal data can be written in order or can be given a numerical rating scale.

5 Is each data set categorical or ordinal?

- **a** Students' year groups
- **b** The league positions of football teams

н

6 Write **two** types of categorical data that you could collect about mobile phones.

- 7 Which of these could be ordinal data?
 - A The marks gained in a test by a group of students
 - **B** The position of dogs in a dog show
 - **C** The colours of sweets

Key point 5

Bivariate data involves pairs of related data.

In many statistical investigations you can investigate pairs of variables to find out how they are related or how changes in one variable affect the other variable. Examples include age and price of second-hand cars, or distance and time taken for train journeys.

Key point 6

Multivariate data involves sets of three or more related data values.

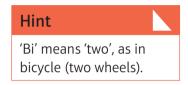
For example, multivariate data for plants are colour, leaf size and height.

8 Suggest words that make a pair of bivariate data in each case.

- a Height and ______ of people
- **b** Hours of work and _____
- c Age of computer and _____

1.2 Grouping data

Learning objectives


- Group discrete data.
- Group continuous data.

Grouping data can help you to see the distribution of the data and spot patterns.

Key point 1

Discrete data can be grouped into classes that do not overlap, like this: 0–10, 11–20, 21–30, etc.

The intervals 0–10, 11–20, etc. are called **class intervals**.

When grouping data, think about the number of class intervals and the width of these intervals.

- If there are not enough classes, important detail may be lost.
- If there are too many classes, the classes will be very small which could hide any patterns.

1 A mathematical test is marked out of 100. Here are the marks for 60 students.

71	62	40	72	59	63	43	81	44	23
55	52	55	58	66	31	45	54	57	59
63	61	54	42	35	47	33	62	41	73
57	82	26	71	52	48	38	65	52	56
68	36	49	63	57	53	77	65	27	88
41	62	35	47	63	39	62	43	46	51

a Copy and complete the frequency table to show the students' marks.

Mark	Tally	Frequency
20–29		
30–39		
40–49		
50–59		
60–69		
70–79		
80-89		
Total		

b The pass mark for the test was 40 out of 100. How many students passed the test?

2 A newsagent recorded the number of newspapers sold on each day in January:

40	62	67	40	49	52	57	42
46	44	48	55	53	51	56	58
58	59	60	44	52	63	48	49
42	53	57	56	53	61	51	

- a Draw and complete a frequency table, using class intervals 40–44, 45–49, and so on.
- **b** In order to cut costs, the newsagent decides that he will stock only 60 newspapers each day. In January, on how many days would he have sold out of newspapers?

Key point 2

Intervals do not need to be equal widths. Use narrower intervals where the data is close together and wider intervals where the data is spread out.

When you don't know the minimum or maximum possible value, you can use an open-ended class interval.

Worked example 1

Here are the ages of people on a bus who are streaming music on their phones:

10, 12, 13, 13, 14, 15, 16, 16, 16, 17, 17, 18, 18, 19, 20, 22, 24, 24, 27, 30, 34, 41, 56, 72

Suggest suitable class intervals for this data.

The minimum age is 0, but you don't know the maximum age, so use an open-ended class, >40.

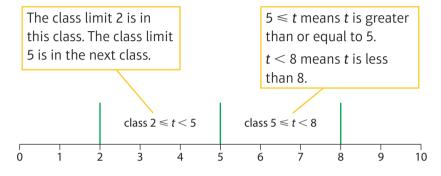
Most of the data values are between 10 and 25, so put these in smaller class intervals.

Class intervals: 0-9, 10-14, 15-19, 20-24, 25-29, 30-40, >40

You need to select class intervals carefully. If you select too many or too few intervals, trends in the data can be obscured.

Calculations based on grouped data are less accurate than those based on raw data. In grouped data, individual data values are not known so you can only calculate estimates of the mean, mode and median.

3 Sue and Lisa conducted a survey into the ages of 125 people at a classical music concert. They used the same data but drew different frequency tables.


These are the frequency tables. **c**

Sue						
Age	Frequency					
0–9	1					
10–19	0					
20–29	2					
30–39	55					
40–49	56					
50-59	8					
60–69	2					
70–79	0					
80-89	1					
Total	125					

Lisa						
Age	Frequency					
0–29	3					
30–34	18					
35–39	37					
40-44	43					
45–49	13					
50-59	8					
>60	3					
Total	125					

- a What is the main difference between the two frequency tables?
- **b** Explain why Lisa has used such a wide class interval for people below the age of 30.
- **c** Which frequency table shows more detail about the most common age ranges? Explain your answer.
- d Why did Lisa leave the last interval open?
- e How could Sue have improved her frequency table? Give two ways.

Continuous data can take any value on a continuous scale and can be sorted into classes.

Key point 3

For continuous data, the class intervals must not have gaps in between them or overlap each other.

4 Twenty students take part in a 400 m race. These are the times taken (in seconds) for each person to complete the race.

54.0	58.0	69.3	82.2	70.4	63.2	69.0	78.0	54.4	66.2
53.0	56.2	71.4	76.3	80.0	84.0	72.2	68.4	56.4	62.3

Karthik, Richard and Serguei each tried to sort the data into a grouped frequency table. They each chose different class intervals.

Karthik	Richard	Serguei
Time (s)	Time (s)	Time, <i>t</i> (s)
50 to 59	50–60	50 <i>< t</i> ≤ 60
60 to 69	60–70	60 <i>< t</i> ≤ 70
70 to 79	70–80	70 <i>< t</i> ≤ 80
80 to 89	80-89	80 < <i>t</i> ≤ 90

- a Why are Karthik and Richard's class intervals unsuitable?
- **b** Comment on the suitability of Serguei's class intervals.

Another person runs 400 m in 105.8 seconds.

c How could Serguei change his final class interval to allow for times longer than 90 seconds?

You round continuous variables to a degree of accuracy, for example heights to the nearest centimetre, or times to the nearest tenth of a second.

You would probably measure the length of a field to the nearest metre. So, if the exact length is 235.3 m, it would be acceptable to say it is 235 m long.

Key point 4

A measurement given correct to the nearest whole unit can be inaccurate by up to $\pm \frac{1}{2}$ unit.

A field with a length of 231 m could measure between 230.5 m and 231.5 m.

You can write this as an inequality:

 $230.5 \le \text{length} < 231.5$

All the values from 230.5 up to but not including 231.5 round to 231.

Key point 5

When data values have been rounded, all possible values that round to the same number must fit into the same class interval.

Worked example 2

- **a** Explain why Serguei's class intervals in question **4** are unsuitable if the times are rounded to the nearest second.
- **b** Design a frequency table with suitable intervals.
- a A time shown as 70 seconds could have been anything in the range 69.5 ≤ t < 70.5. It may belong in the class interval 60 < t ≤ 70 or 70 < t ≤ 80.

Serguei	The times 69.5 to 70
Time, <i>t</i> (s)	fit into this group.
50 < <i>t</i> ≤ 60	Not all values that
60 < <i>t</i> ≤ 70	round to 70 fit into
70 < <i>t</i> ≤ 80	this class interval
80 < <i>t</i> ≤ 90	(e.g. 70.2).

bTime, t (s) $49.5 \le t < 60.5$ $60.5 \le t < 70.5$ $70.5 \le t < 80.5$ $80.5 \le t < 90.5$

70 fit into this group.
sinfall as shalowin Dunshu
ainfall each day in Runsby.

5 Gareth records the amount of rainfall each day in Here is the raw data for January (in centimetres).

5.6	4.3	2.1	0	0.8	5.2	3.3	2.8	2.2	1.6	0.4
1.9	3.2	4.2	1.0	3.0	3.6	2.4	1.8	0.4	0	0
3.2	3.5	2.7	1.2	2.1	1.1	5.7	5.2	3.1		

Design and complete a frequency table with suitable class intervals for this data.

All figures that round to

6 Frank delivers parcels.

These are the masses in kilograms, to 2 decimal places, of the parcels that he delivers in one day.

2.44	1.57	2.35	1.13	2.52	1.59	2.53
0.65	2.56	1.60	2.67	1.22	2.89	1.72
2.99	0.27	3.00	1.77	3.13	1.34	3.22
1.81	0.74	1.88	1.37	1.91	0.48	2.11
1.48	2.36	0.85	2.22	1.53	2.29	

a What is the mass of the heaviest parcel?

b Frank begins to draw a frequency table.

Mass, <i>m</i> (kg)	Tally	Frequency
0 ≤ <i>m</i> < 0.5		
0.5 ≤ <i>m</i> < 1		

Copy and complete Frank's frequency table. Use classes of equal width.

7 Here are the weights of 30 boys, rounded to the nearest kilogram.

60	62	51	53	42	52	50	53	48	55
58	59	63	49	52	54	35	53	44	54
46	57	46	67	58	56	48	48	37	41

a What is the range of values that could be represented by the weight 48 kg?

- **b** Kathleen wanted to use class intervals of $35 \le w < 40$, $40 \le w < 45$, $45 \le w < 50$, etc. Explain why this is wrong.
- c Choose class intervals of width 5 kg that would suit this rounded data.
- **d** Use your class intervals from part **c** to create and complete a frequency table for this data.

1.3 Primary and secondary data

Learning objectives

- Know the difference between primary and secondary data.
- Understand the advantages and disadvantages of primary and secondary data.

Key point 1

Primary data is

collected by, or for, the person who is going to use it.

Secondary data has been collected by someone else.

Examples of collecting primary data include:

- measuring the circumference of babies' heads in a hospital
- observing and tallying the colours of all the cars passing your house on a certain morning.

Sources of secondary data include websites, newspapers and magazines, research articles, databases and census returns.

1 Check up

Questionnaires

1 Is this a closed or an open question?'What do you think about the new hall?'Give a reason for your answer.

Types of data

2 Which of these words can be used to describe the data in parts **a** to **f**?

continuous discrete quantitative qualitative primary secondary

- **a** Height
- **b** Colour
- c Number of aunts
- **d** Time
- e Census information on a website
- **f** A tally you make of car types

- **3** Which of these are primary data and which are secondary data?
 - A Data collected from a car magazine
 - **B** Data from the BBC website
 - C Data collected by asking questions of people at a supermarket

Grouping data

4 A council kept a 30-day record of the number of absentees among its workers. The data is:

5	12	17	27	4	13	32	54	6	13
14	23	24	3	9	5	15	21	7	2
6	8	9	14	14	19	17	18	22	24

Sort this data into groups and draw and complete a grouped frequency table.

5 Thirty students were asked to time their journey to school to the nearest minute. These are the results.

6	18	29	55	7	34	28	56	33	4
2	41	33	23	7	43	26	53	44	41
32	46	16	17	3	26	17	47	22	17

Design and complete a frequency table to sort this data. Use class intervals of equal width.

Remember: the data is rounded.

1 Strengthen

Questionnaires

. .

O1 hint	5 1 Star	te wheth	er each	n ques	tion is	open d	or close	ed.			
In closed questions	a V	Vhere die	d you g	go on h	oliday	last ye	ear?				
you choose an answer	b⊦	low man	y time	s a wee	ek do y	ou buy	y a nev	vspape	er?		
from a list. In open	C		1-3		4-6		7				
questions you write your own answer.											
your own answer.	Tvpes	of data									
		ch of the		contir		lata ai	nd whi	ch are	discret	e data	17
Q2 hint	2 Whi A T			contin	10005 (aiseret	.c uutt	•
Any data measured			. .								
with a measuring instrument is	BN	lumber o	of dogs	5							
continuous.	C V	'olume o	f milk								
	3 The	re are th	ree ho	rses in	a field	•					
		one of t	hese w	ords t	о сору	and co	omplet	e each	n sente	nce.	
Q3 hint	c	discrete	qı	uantita	itive	qua	litative	e c	ontinu	ous	cumulative
Quantitative data is 'quantities' or	a T	he colou	ır of th	e hors	es is		C	lata.			
numbers.	b T	he numl	oer of l	norses	is		dat	a.			
	Group	ing data	a								
Q4 hint	8th 4 Her	e are the	e battir	ng scor	es for	50 cric	ket pla	yers.			
You could use an	33	48	30	24	15	31	23	28	32	29	
open-ended class for	36	31	31	37	42	18	20	34	40	25	
the higher scores.	29	28	29	32	26	33	25	27	32	22	
-	22	31	21	35	34	29	30	34	26	32	

a Write the lowest score.

29

35

27

32

- **b** Write the highest score.
- **c** Design and complete a grouped frequency table for this data. Use classes of equal width.

28 24

33

27

50

d From your answer to part **c**, decide which class intervals contain the most data values.

Make a new frequency table, with:

- smaller class widths where there is most data
- wider class widths where there is not so much data.

19