

Module 2

Types of formulae

In simple molecules and giant structures different types of formulae can be used to describe the number or ratio of particles present.

Molecular formulae

Molecular formulae tell you the number and type of each atom in a simple molecule.

White spheres represent hydrogen atoms Red spheres Black spheres represent represent carbon atoms oxygen atoms

So, in an ethanol molecule there are 2 carbon atoms, 6 hydrogen atoms and I oxygen atom. The molecular formula is C₂H₆O.

Empirical formulae

Empirical formulae show the simplest ratio of atoms of different elements in a compound. These are often used to describe the ratios in giant structures as the actual numbers will depend on

the amount of the

compound. In sodium chloride Cl⁻ ion there are many ions present in one small grain. Na⁺ ion There is always

one Na⁺ ion to every Cl⁻ ion so the empirical formula is NaCl.

A compound is found to contain 4.37 g of nitrogen, 5.00 g of oxygen and 0.63 g of hydrogen, by elemental analysis. It has a relative formula mass of 64.0. Calculate its empirical formula and hence deduce its molecular formula. (4 marks)

	Nitrogen	Oxygen	Hydrogen
Amount (mol)	$\frac{4.37}{14.0} = 0.312$	$\frac{5.00}{16.0} = 0.313$	$\frac{0.63}{1.0} = 0.63$
Molar ratio	$\frac{0.312}{0.312} = 1$	0.313 0.312 ≈ 1	$\frac{0.63}{0.312} = 2.02$
Whole number ratio	I	I	2

The empirical formula is NOH₂ with a relative mass of 32.0. The compound's relative formula mass is 64.0, so the molecular formula is double the empirical formula, so $N_2O_2H_4$.

Find the empirical formula by calculating the amount of each element, then divide through by the smallest amount to find the molar ratio. If this is not a whole number ratio scale up as appropriate.

This is the smallest amount, so divide the

Worked example

Using elemental analysis, compound X is found to contain 40.0% C, 6.7% H and 53.3% O. The molar mass of X is 90. Calculate its empirical formula and hence deduce its molecular formula.

(4 marks)

If analysis data is given as percentages a workaround is to assume you have IOOg of the compound and so consider the percentages as masses. You can then work out the amount in moles.

	Carbon	Hydrogen	Oxygen
Amount (mol)	$\frac{400}{12} = 3.33$	$\frac{6.7}{1} = 6.7$	$\frac{53.3}{16} = 3.33$
Molar ratio	$\frac{3.33}{3.33} = 1$	$\frac{6.7}{3.33}$ ≈ 2	$\frac{3.33}{3.33} = 1$
Whole number ratio	I	2	I

So the empirical formula is CH₂O. Total atomic masses of the atoms in $CH_2O = I2 + 2 + I6 = 30.$

As the molar mass of X is 9000, which is 3 times bigger, its molecular formula must be 3 times bigger.

Molecular formula of $X = C_3 H_6 O_3$.

Now try this

other amounts by this.

An acid is found to contain 0.50 g of hydrogen, 8.18 g of sulfur and 16.3 g of oxygen. Calculate its empirical formula. (3 marks)