Had a go 🗌 Nearly there 🗌 Nailed it! 🗌

Exam skills 4

1 NOCl decomposes to form nitrogen monoxide and chlorine. $K_c = 1.6 \times 10^{-5} \text{ mol dm}^{-3}$.

 $2NOCl(g) \rightleftharpoons 2NO(g) + Cl_2(g)$

(a) (i) Calculate the enthalpy change of reaction given the following enthalpy of formation data.

	$\mathbf{\Lambda}_{\mathbf{f}} H^{\mathbf{\Theta}}$ / kJ mol ⁻¹	
NOCl	51.2	
NO	90.3	

- \dots $\Delta_r H^{e} = \dots k J mol^{-1}$ (3 marks) (ii) Why is the enthalpy of formation of $Cl_2(g)$ zero?
- (1 mark)
- (b) Calculate the enthalpy change of reaction given the following bond enthalpies. Assume that the bonding is O=N–Cl in NOCl and N=O in NO.

	Bond enthalpy/ kJ mol ⁻¹	
N=O	481	
N–Cl	159	
Cl–Cl	243	

..... (3 marks)

(c) Complete the table with 'increased', 'decreased' or 'unchanged' to give the effect of the change given on the rate of attainment of equilibrium and on the yield of chlorine.

(3 marks)

Change	Effect on rate of attainment of equilibrium	Effect on yield of chlorine
increase of temperature		
increase of pressure		
addition of a catalyst		

(d) The value of K_c for $2NO(g) + Cl_2(g) \rightleftharpoons 2NOCl(g)$ is

- \Box A 1.6 × 10⁻⁵ mol⁻¹ dm³
- **B** $1.6 \times 10^{-5} \, \text{mol} \, \text{dm}^{-3}$
- \Box C 62 500 mol⁻¹ dm³
- \Box D 62500 mol dm⁻³

The reaction has been reversed, so the values of the concentrations in K_c will now be inverted.

(1 mark)