Had a	go 🗌	Nearly there		Nailed	it!	
-------	------	---------------------	--	--------	-----	--

The equilibrium constant

	1	For the equilibrium $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$, the forward reaction is exothermic. (a) Write the expression for the equilibrium constant, K_c .						
		(b) How can the value of K	be increased?	The question is not				
		☐ A Increasing the conc	Increasing the concentration of sulfur dioxide					
		\square B Reducing the temperature						
		☐ C Increasing the press	sure					
		☐ D Adding a suitable c	ratalyst	(1 mark)				
		(c) In industry this reaction is carried out at a temperature of around 450 °C.						
		Explain why this temperature is chosen, and not a higher or lower temperature.						
Maths skills		(d) In a simulation, under certain conditions the equilibrium mixture was found to have 0.5mol SO_2 , 0.25mol O_2 and 1.5mol SO_3 in a vessel of volume 100cm^3 .						
		Use your expression from (a) to find K_c and give the units.						
		The concentrations of each gas in mol dm ⁻³ are						
		Substituting into the K_c expression, $K_c =$						
		Substituting mol dm^{-3} int	to K_c to give units					
	2	In the reaction $N_2 + 3H_2 \rightleftharpoons 3$	$2NH_3$, $K_c = 0.105 \mathrm{dm^6 mol^{-2}}$ under certain of	conditions.				
		This value of K_c indicates that						
		\Box A the concentration of	of NH_3 is 0.105mol dm^{-3}					
		\square B the concentration of	of NH ₃ is $\sqrt{0.105}$ mol dm ⁻³					
		☐ C the equilibrium pos	sition lies to the left hand side					
		\square D 10.5% of the mixture	re is ammonia.	(1 mark)				